EconPapers    
Economics at your fingertips  
 

Interactive Suitability of Rice Stubble Biochar and Arbuscular Mycorrhizal Fungi for Improving Wastewater-Polluted Soil Health and Reducing Heavy Metals in Peas

Muniba Farhad, Maryam Noor, Muhammad Zubair Yasin, Mohsin Hussain Nizamani, Veysel Turan and Muhammad Iqbal ()
Additional contact information
Muniba Farhad: Department of Chemistry, Government College University, Faisalabad 38000, Pakistan
Maryam Noor: Government General Hospital, Ghulam Muhammad Abad, Faisalabad 38000, Pakistan
Muhammad Zubair Yasin: Department of Emergency, Aziz Fatimah Hospital, Faisalabad 38000, Pakistan
Mohsin Hussain Nizamani: Combined Military Hospital Institute of Medical Sciences, Bahawalpur 63100, Pakistan
Veysel Turan: Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Bingöl University, Bingöl 12000, Türkiye
Muhammad Iqbal: Department of Environmental Sciences, Government College University, Faisalabad 38000, Pakistan

Sustainability, 2024, vol. 16, issue 2, 1-18

Abstract: Arable soils irrigated with wastewater (SIWs) cause ecological and human health issues due to the presence of heavy metals (HMs). Burning rice stubble (RS) poses severe environmental and human health hazards. Converting RS into rice stubble compost (RSC) and rice stubble biochar (RSB) can overcome these issues. Here, we considered the role of RS, RSC, and RSB as individual soil amendments and combined each of them with arbuscular mycorrhiza fungi (AMF) to observe their effectiveness for HM immobilization in SIW, their uptake in pea plants, and improvements in the physicochemical properties of soil. The results revealed that adding RSB and AMF reduced the bioavailable concentrations of Pb, Cd, Ni, Cu, Co, and Zn in SIW by 35%, 50%, 43%, 43%, 52%, and 22%, respectively. Moreover, RSB+AMF treatment also reduced Pb, Cd, Ni, Cu, Co, and Zn concentrations in grain by 93%, 76%, 83%, 72%, 71%, and 57%, respectively, compared to the control. Improvements in shoot dry weight (DW) (66%), root DW (48%), and grain yield (56%) per pot were also the highest with RSB+AMF. RSB+AMF treatment enhanced soil health and other soil attributes by improving the activity of urease, catalase, peroxidase, phosphatase, β-glucosidase, and fluorescein diacetate by 78%, 156%, 62%, 123%, 235%, and 96%, respectively. Interestingly, RSB+AMF also led to the strongest AMF–plant symbiosis, as assessed by improved AMF root colonization (162%), mycorrhizal intensity (100%), mycorrhizal frequency (104%), and arbuscular abundance (143%). To conclude, converting RS into RSB can control air pollution caused by RS burning. Moreover, adding RSB with AMF to SIW can reduce HM uptake in plants, improve soil health, and thus minimize ecological and human health issues.

Keywords: rice stubble; health; arbuscular mycorrhiza fungi; symbiosis; pollution (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
https://www.mdpi.com/2071-1050/16/2/634/pdf (application/pdf)
https://www.mdpi.com/2071-1050/16/2/634/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:16:y:2024:i:2:p:634-:d:1317082

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:16:y:2024:i:2:p:634-:d:1317082