EconPapers    
Economics at your fingertips  
 

A Feasibility Assessment of Heat Energy Productivity of Geothermal Wells Converted from Oil/Gas Wells

Peng Zhang and Boyun Guo ()
Additional contact information
Peng Zhang: Energy Institute of Louisiana, University of Louisiana at Lafayette, Lafayette, LA 70504, USA
Boyun Guo: Energy Institute of Louisiana, University of Louisiana at Lafayette, Lafayette, LA 70504, USA

Sustainability, 2024, vol. 16, issue 2, 1-16

Abstract: The mitigation of greenhouse gas emissions necessitates a shift from fossil fuel to environmentally friendly energy, such as geothermal energy. It is advantageous to retrofit end-of-life oil/gas wells for geothermal energy extraction. Prior to repurposing depleted wells into geothermal wells, it is imperative to conduct the heat-energy potential assessment. In this work, an analytical model was developed for this purpose. A case study was conducted using the model and the data from a well in North-west Louisiana for a feasibility assessment. A sensitivity study was performed with the model to identify major factors affecting well productivity. The result of the case study shows that reverse circulation is 35% more efficient than direct circulation for improving the heat-energy productivity of geothermal wells converted from oil/gas wells. The sensitivity analysis revealed that well productivity increases with higher injection rates and greater horizontal wellbore lengths. Additionally, well productivity rises in correspondence with reservoir temperature as well as the temperature of the injected water. However, well productivity decreases as the thermal conductivity of the tubing insulation increases. Counteracting this trend, well productivity increases with thicker tubing insulation layers. This study furnishes engineers with an easy-to-use tool for predicting the heat-energy deliverability of wells converted from end-of-life oil/gas wells.

Keywords: geothermal wells; heat transfer; well productivity; assessment; mathematical modeling (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/16/2/768/pdf (application/pdf)
https://www.mdpi.com/2071-1050/16/2/768/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:16:y:2024:i:2:p:768-:d:1320066

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:16:y:2024:i:2:p:768-:d:1320066