EconPapers    
Economics at your fingertips  
 

Amphibious Architecture: A Biomimetic Design Approach to Flood Resilience

Hope Ameh (), Lidia Badarnah and Jessica Lamond
Additional contact information
Hope Ameh: School of Architecture and Environment, College of Arts Technology and Environment, University of the West of England, Bristol BS16 1QY, UK
Lidia Badarnah: School of Architecture and Environment, College of Arts Technology and Environment, University of the West of England, Bristol BS16 1QY, UK
Jessica Lamond: School of Architecture and Environment, College of Arts Technology and Environment, University of the West of England, Bristol BS16 1QY, UK

Sustainability, 2024, vol. 16, issue 3, 1-21

Abstract: Amphibious buildings use the buoyancy principle in the design of their foundation systems to mitigate flood impact. In some cases, amphibious buildings are fitted with mechanical systems that further aid the buoyancy element to temporarily raise the building and guide its descent to natural ground level. These mechanical systems require external operation, preventing the amphibious building from passively responding during flood events as is one of the requirements of a robust flood mitigation measure. Additionally, buildings in flood environments are often left with stains on the exterior facade from floodwater contamination from sewage and chemicals, among others. This paper distinguishes three main components of an amphibious foundation: the buoyancy element, vertical guidance post, and structural sub-frame, and discusses their functionality. The natural world provides solutions to tackling environmental issues such as flooding. When systematically studied and transferred, nature can inspire innovative ideas for functional and sustainable designs for the built environments. Although there are many existing designs and a small number of constructed amphibious buildings, there are very few studies that discuss how the designs are derived, and even fewer on a framework emulating natural systems for transfer into amphibious building design. In that context, this research uses the biomimetic transfer process to abstract relevant biological systems, illustrating their potential for transfer into amphibious foundation design. The aim is to understand how these biological systems passively and continuously respond and adapt to their environment. Organisms such as the Venus flower basket, giant kelp, and red mangrove, among others, are discussed, to understand how they perform the identified functions. The steps of the biomimetic transfer process are used to integrate functions of amphibious buildings and processes of the studied biological systems. The final output of this paper is a discussion of the ways in which these derived relationships can be adopted in amphibious building design.

Keywords: architecture; amphibious buildings; biomimetics; flood resilience (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/16/3/1069/pdf (application/pdf)
https://www.mdpi.com/2071-1050/16/3/1069/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:16:y:2024:i:3:p:1069-:d:1326957

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:16:y:2024:i:3:p:1069-:d:1326957