Sustainable Materials via the Assembly of Biopolymeric Nanobuilding Blocks Valorized from Agri-Food Waste
Mohammad Peydayesh ()
Additional contact information
Mohammad Peydayesh: Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
Sustainability, 2024, vol. 16, issue 3, 1-11
Abstract:
This paper presents an overview of current state-of-the-art agri-food waste valorization for developing advanced materials via the nanoscale assembly of biopolymeric building blocks. Emphasizing the imperative shift from a linear to a circular economy, the environmental impacts of agri-food waste, including its substantial contribution to global carbon dioxide (CO 2 ) emissions and resource depletion, are underscored. This study explores the potential of harnessing proteins and polysaccharides extracted from agri-food waste to synthesize advanced materials, such as films, hydrogels, and aerogels. The two categories of fibrillar nanobuilding blocks, including exfoliated fibrils from structural biopolymers like cellulose, chitin, silk, and collagen, as well as self-assembled protein nanofibrils from different proteins valorized from food industries’ waste, are showcased. These biopolymeric nanofibrils can be further assembled to develop hierarchical advanced materials, with many applications in energy, environmental fields, and beyond. However, in this context, there are critical considerations, including the sustainability of the valorization methods, challenges associated with the heterogeneity of food waste, and the imperative need for a life cycle assessment to ensure complete sustainability. The delicate balance between integrating waste into the food chain and exploring alternative scenarios is discussed, along with challenges related to the short lifespan of agri-food waste, its heterogeneity, and the economic viability of valorization processes. Finally, the ongoing pursuit of developing high-performance, sustainable materials and the importance of societal cultivation to foster a circular economy mindset are discussed.
Keywords: agri-food waste; biopolymers; circular economy; nanobuilding blocks assembly; valorization (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2071-1050/16/3/1286/pdf (application/pdf)
https://www.mdpi.com/2071-1050/16/3/1286/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:16:y:2024:i:3:p:1286-:d:1332343
Access Statistics for this article
Sustainability is currently edited by Ms. Alexandra Wu
More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().