EconPapers    
Economics at your fingertips  
 

Analysis of a Multiple Traffic Flow Network’s Spatial Organization Pattern Recognition Based on a Network Map

Juanzhu Liang (), Shunyi Xie and Jinjian Bao
Additional contact information
Juanzhu Liang: The Academy of Digital China (Fujian), Fuzhou University, Fuzhou 350002, China
Shunyi Xie: The Academy of Digital China (Fujian), Fuzhou University, Fuzhou 350002, China
Jinjian Bao: The Academy of Digital China (Fujian), Fuzhou University, Fuzhou 350002, China

Sustainability, 2024, vol. 16, issue 3, 1-20

Abstract: Detecting the spatial organization patterns of urban networks with multiple traffic flows from the perspective of complex networks and traffic behavior will help to optimize the urban spatial structure and thereby promote the sustainable development of the city. However, there are notable differences in regional spatial patterns among the different modes of transportation. Based on the road, railway, and air frequency data, this article investigates the spatial distribution and accessibility patterns of multiple transportation flows in the Yangtze River Economic Belt. Next, we use the TCD (Transportation Cluster Detection) community discovery algorithm and integrate it with the Baidu Maps API to obtain real-time time cost data to construct a community detection model of a multiple traffic flow network. We integrate the geographical network and topological network to perform feature extraction and rule mining on the spatial organization model of the urban network in the Yangtze River Economic Belt. The results show that: (1) The multiple traffic flow network of the Yangtze River Economic Belt has significant spatial differentiation. The spatial differentiation of aviation and railway networks is mainly concentrated between regions and within provinces, while the imbalance of highway networks is manifested as an imbalance within regions and between provinces. (2) The accessibility pattern of the highway network in the Yangtze River Economic Belt presents a “core–edge” spatial pattern. The accessibility pattern of the railway network generally presents a spatial pattern of “strong in the east and weak in the west”. Compared with sparse road and railway networks, the accessibility pattern of the aviation network shows a spatial pattern of “time and space compression in western cities”. (3) A total of 24 communities were identified through the TCD algorithm, mainly encompassing six major “urban economic communities” located in Guizhou, Yunnan, Anhui, Sichuan–Chongqing, Hubei–Hunan–Jiangxi, and Jiangsu–Zhejiang–Shanghai. (4) The urban network space organization model of the Yangtze River Economic Belt can be roughly divided into three models: the “single-core” model, with Guizhou, Kunming, and Hefei as the core, the “dual-core” model, constructed by Chengdu–Chongqing, and the “multi-core” model, constructed by Changsha–Wuhan–Nanchang and Shanghai–Nanjing–Hangzhou. This model of urban network spatial organization holds indicative significance in revealing the spatial correlation pattern among prefecture-level city units.

Keywords: multiple traffic flow network; spatial organization model; Yangtze River Economic Zone; TCD algorithm; Baidu Maps; weighted average travel time (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/16/3/1300/pdf (application/pdf)
https://www.mdpi.com/2071-1050/16/3/1300/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:16:y:2024:i:3:p:1300-:d:1332703

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:16:y:2024:i:3:p:1300-:d:1332703