EconPapers    
Economics at your fingertips  
 

Flexural Performance of Steel-Continuous-Fiber Composite Bar and Fiber-Reinforced Polymer Bar Hybrid-Reinforced Sustainable Sea-Sand Concrete Beams: Numerical and Theoretical Study

Anlian Wang, Zhiwen Zhang and Yan Liu ()
Additional contact information
Anlian Wang: College of Civil Science and Engineering, Yangzhou University, Yangzhou 225127, China
Zhiwen Zhang: College of Civil Science and Engineering, Yangzhou University, Yangzhou 225127, China
Yan Liu: College of Civil Science and Engineering, Yangzhou University, Yangzhou 225127, China

Sustainability, 2024, vol. 16, issue 5, 1-25

Abstract: To investigate the flexural performance of steel-continuous-fiber composite bar (SFCB) and fiber-reinforced polymer (FRP) bar hybrid-reinforced sea-sand concrete (SSC) beams, a total of 21 SSC beams were numerically studied. The concrete damaged plasticity model (CDPM) and FRP brittle damage model were adopted, and the bond-slip behavior between the reinforcement and concrete was considered. Parametric studies were conducted to study the effects of the SSC strength, sectional steel ratio of the SFCB, core steel bar yield strength of the SFCB, out-wrapped FRP elastic modulus of the SFCB, and the ultimate tensile strength of the SFCB on the flexural performance of the beams. The results indicate that increasing the SSC strength and out-wrapped FRP modulus enhanced the bearing capacity and stiffness but reduced the ductility, shifting failure from concrete crushing to FRP bar fracture. A higher SFCB sectional steel ratio markedly improved the flexural stiffness, transforming the load–deflection curve. Elevated core steel bar yield strength maintained the cracking load and deflection while increasing the yield and ultimate loads. For SFCB fracture, higher ultimate tensile strength in the out-wrapped FRP enhanced the ultimate load and deflection, but not in concrete crushing failure. In addition, three failure modes were defined based on the proper assumption, with the proposed bearing capacity formulas aligning well with the FE results.

Keywords: SSC beam; SFCB; FRP bar; flexural performance; parametric analysis; bearing capacity (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/16/5/1866/pdf (application/pdf)
https://www.mdpi.com/2071-1050/16/5/1866/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:16:y:2024:i:5:p:1866-:d:1345164

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:16:y:2024:i:5:p:1866-:d:1345164