EconPapers    
Economics at your fingertips  
 

Projection of Non-Industrial Electricity Consumption in China’s Pearl River Delta under Global Warming Scenarios

Tiaoye Li, Lingjiang Tao () and Mi Zhang
Additional contact information
Tiaoye Li: School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, China
Lingjiang Tao: School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, China
Mi Zhang: School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China

Sustainability, 2024, vol. 16, issue 5, 1-17

Abstract: Global warming is a global issue closely linked to sustainability, and power systems around the world are facing immense pressure due to global warming. The purpose of this study is to investigate the impact of global warming on non-industrial electricity consumption in China’s Pearl River Delta. The Weather Research and Forecasting (WRF) model is employed to dynamically downscale and simulate summer climate change characteristics during historical periods and future warming scenarios of 1.5/2 °C. Then, in order to dynamically investigate the changes in non-industrial electricity consumption in cities after warming, we developed a non-industrial electricity consumption estimation model based on degree days and GDP. The regression model can well reproduce non-industrial electricity consumption in summer. Under future warming scenarios of 1.5/2 °C, the results indicate an annual growth trend in non-industrial electricity consumption due to global warming. Under a 1.5 °C warming scenario, non-industrial electricity consumption in both Guangzhou and Zhuhai increases, with Guangzhou experiencing a larger increase of about 10 terawatt-hours (TWh) compared to the historical period. However, under a 2 °C warming scenario, non-industrial electricity consumption in both cities slightly decreases compared to the 1.5 °C warming scenario, with a maximum decrease of 874 million kilowatt-hours.

Keywords: Pearl River Delta; climate change; dynamic downscaling; electricity consumption projection (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/16/5/2012/pdf (application/pdf)
https://www.mdpi.com/2071-1050/16/5/2012/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:16:y:2024:i:5:p:2012-:d:1348531

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:16:y:2024:i:5:p:2012-:d:1348531