EconPapers    
Economics at your fingertips  
 

Investigation on the Confined Breakage Characteristics of Calcareous Sand in the South China Sea Integrated Using Relative Breakage Ratio and Fractal Dimension

Jianfeng Zhu, Qiqi Zheng and Hao Yang ()
Additional contact information
Jianfeng Zhu: School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou 310023, China
Qiqi Zheng: School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou 310023, China
Hao Yang: School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou 310023, China

Sustainability, 2024, vol. 16, issue 5, 1-20

Abstract: Calcareous sand, ubiquitous in the geotechnical makeup of the South China Sea, exhibits both compressibility and vulnerability to fragmentation when subjected to external loading, spanning a spectrum from typical to extreme conditions. This investigation aims to quantitatively assess the compression and particle breakage characteristics of calcareous sand under varied parameters, including relative density, saturation, applied loads, and loading paths, specifically focusing on sustainable geotechnical methodologies. Through a series of confined compression tests, this evaluation employed the relative breakage ratio and fractal dimension as key evaluative metrics. The results indicated that employing this integrated approach offered a more comprehensive understanding of calcareous sand breakdown mechanisms than relying on a singular particle breakage index. Furthermore, an increase in relative density can induce a transition in particle contact behavior, shifting from point-to-point interactions to face-to-face contact, thereby reducing inter-particle stress and minimizing grain breakage, particularly under loads below 200 kPa. Increasing loads exacerbated particle breakage, with finer particles predominantly initiating this process. During reloading, pore ratios across various load levels surpass those observed during initial loading, except at 1600 kPa, where a decline in pore ratio was noted, coinciding with pore water extrusion and the onset of new particle fracturing. The lubricating effect of water reduces inter-particle friction, enhancing stress concentration at particle edges and localized particle breakage, thereby increasing the presence of finer particles without significantly altering the overall structure. Notably, the influence of pore water pressure is evident during the reloading phase. These findings contribute to a refined theoretical framework for predicting coastal erosion risks and devising effective environmental protection strategies for sustainable coastal engineering practices.

Keywords: calcareous sand; particle breakage; relative breakage ratio; fractal dimension; compression behavior (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/16/5/2190/pdf (application/pdf)
https://www.mdpi.com/2071-1050/16/5/2190/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:16:y:2024:i:5:p:2190-:d:1352110

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:16:y:2024:i:5:p:2190-:d:1352110