EconPapers    
Economics at your fingertips  
 

Eco-Efficiency Performance for Multi-Objective Optimal Design of Carbon/Glass/Flax Fibre-Reinforced Hybrid Composites

Wahidul Biswas () and Chensong Dong
Additional contact information
Wahidul Biswas: Sustainable Engineering Group, School of Civil and Mechanical Engineering, Curtin University, Perth 6102, Australia
Chensong Dong: School of Civil and Mechanical Engineering, Curtin University, Perth 6102, Australia

Sustainability, 2024, vol. 16, issue 7, 1-14

Abstract: An eco-efficiency optimisation study on unidirectional carbon/glass fibre-reinforced hybrid composites with natural fibre (i.e., flax) and without flax is presented in this paper. The mechanical performance was assessed by determining the flexural properties obtained via finite element analysis (FEA)-based simulation. Given the required flexural strength, optimal candidate designs were found using a set of design rules and regression analysis, with minimising the cost and weight being the objectives. An eco-efficiency framework was applied to determine the eco-efficient hybrid composites. Life cycle assessment was an indispensable component of the framework as it helped determine the life cycle environmental impacts and costs of the hybrid composite materials. The environmental impacts and cost values were converted to the eco-efficiency portfolios of these composites for both comparison and selection purposes. The hybrid composites using bio-based flax fibre have been found to be eco-efficient in most of the cases due to the avoidance of energy-intensive and expensive reinforcing materials. The environmental impacts of the hybrid composites using flaxes are 12 to 13% less than the ones using no flaxes and the former are 7 to 13% cheaper than the latter, making the flax-based hybrid composites eco-efficient.

Keywords: hybrid composites; carbon; glass; flax; flexural; eco-efficiency; life cycle analysis (LCA); finite element analysis (FEA) (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/16/7/2928/pdf (application/pdf)
https://www.mdpi.com/2071-1050/16/7/2928/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:16:y:2024:i:7:p:2928-:d:1368405

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:16:y:2024:i:7:p:2928-:d:1368405