EconPapers    
Economics at your fingertips  
 

Condition Information Entropy and Rough Set Method Based on Particle Swarm Optimization Applied in the Natural Quality Evaluation of Cultivated Land

Hongmei Yu, Zhaokun Yu and Xubing Zhang ()
Additional contact information
Hongmei Yu: Science and Technology on Complex Land System Simulation Laboratory, Beijing 100012, China
Zhaokun Yu: School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China
Xubing Zhang: School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China

Sustainability, 2024, vol. 16, issue 8, 1-13

Abstract: The evaluation of the natural quality of cultivated land is crucial for preserving arable land and achieving a balance between the quantity and quality of arable land. Therefore, a timely assessment of the natural quality of cultivated land is needed to monitor its changes. However, current methods often focus on a single specified crop, neglecting the variations that occur across different specified crops. Since the indicator weight recognition method is only suitable for a single crop, this paper proposes a novel model evaluating the natural quality of cultivated land based on the method of “hidden light–temperature index and yield ratio coefficient”. In addition, the condition information entropy and rough set method based on particle swarm optimization (CIERS-PSO) were proposed to evaluate the natural quality of cultivated land in Enshi. Firstly, condition information entropy and rough set are adopted to determine the importance of the indicator automatically. Then, particle swarm optimization (PSO) is utilized to obtain the optimal weights of the first-level and second-level indicators. Finally, the proposed model and evaluation method were adopted to evaluate the natural qualities of the cultivated land. The experimental results demonstrated that the combination of the “hidden light–temperature index and yield ratio coefficient” model and the CIERS-PSO method can automatically identify the indicator weights for the evaluation of natural quality in multi-crop cultivated land. It could obtain better evaluation accuracy even if the sample size is small.

Keywords: particle swarm optimization algorithm; conditional information entropy; rough set; natural quality evaluation of cultivated land (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/16/8/3484/pdf (application/pdf)
https://www.mdpi.com/2071-1050/16/8/3484/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:16:y:2024:i:8:p:3484-:d:1380211

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:16:y:2024:i:8:p:3484-:d:1380211