EconPapers    
Economics at your fingertips  
 

Optimization of a Hybrid Solar–Wind Microgrid for Sustainable Development: A Case Study in Antofagasta, Chile

Carlos Merino and Rui Castro ()
Additional contact information
Carlos Merino: Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
Rui Castro: INESC-ID/IST, University of Lisbon, Rua Alves Redol, 9, 1000-029 Lisbon, Portugal

Sustainability, 2024, vol. 16, issue 9, 1-19

Abstract: This paper introduces a genetic algorithm designed to optimize the sizing of a hybrid solar–wind microgrid connected to the main electric grid in Chile, serving a simulated town of 2000 houses. The goal is to promote sustainable development by using renewable energy sources (RES) to supply a small village. The model, considering local meteorological conditions, aggregated load, and Chilean electrical regulations, establishes the optimal number of photovoltaic modules and wind turbine generators and allows for the monitoring of the microgrid’s operation, whose operating strategy is proposed herein. Adhering to Chilean regulations, a maximum exporting power of 9 MW is analyzed, with no restrictions on importing power, which is needed when the renewable resources are not enough to meet the demand. The optimization algorithm, aimed at sizing the RES supply, identified an optimal solution composed of 5 photovoltaic modules of 500 Wp each (2.5 kWp in total) and 123 wind turbines of 100 kW each (total of 12,300 kW), meeting around 85% of the demand through renewable generation. Due to time mismatches between generation and load patterns, the remaining energy was imported. The project’s net present value is approximately EUR 25 M, with a levelized cost of energy at 37 EUR/MWh. A comparison with HOMER grid simulations validates the efficacy of the developed model.

Keywords: hybrid microgrid; solar PV; wind; optimization; genetic algorithms; Chile (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/16/9/3668/pdf (application/pdf)
https://www.mdpi.com/2071-1050/16/9/3668/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:16:y:2024:i:9:p:3668-:d:1384222

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:16:y:2024:i:9:p:3668-:d:1384222