EconPapers    
Economics at your fingertips  
 

Assessing Temperature Change Impact in the Wake of Ongoing Land Use Change: A Case Study at Lake Dianshan

Hua Liu and Xuefei Zhou ()
Additional contact information
Hua Liu: State Key Lab of Pollution Control and Resource Reuse (Tongji University), College of Environmental Sciences and Engineering, Tongji University, Shanghai 200092, China
Xuefei Zhou: Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China

Sustainability, 2024, vol. 17, issue 1, 1-13

Abstract: Climate change exerts both direct and indirect influences on the eutrophication of surface water ecosystems in various ways. This study aimed to evaluate the impact of temperature fluctuations on trophic levels through various interdisciplinary coupling analysis methods after land use change, which including water and sediment sample analysis, hydraulic model, remote sensing, and historic data analysis. For the historical analysis, six satellite images of Lake Dianshan were examined to assess algal bloom occurrences and the coverage of Eichhornia crassipes from 2013 to 2023. The correlation between trophic indicators and temperature was analyzed using statistical methods. For the monthly analysis, a total of 27 sediment samples and 54 water samples collected from Lake Dianshan were assessed to determine how seasonal temperature variations influence eutrophication status. The trophic indicators have higher concentration at inlet sampling sites compared to outlet sites, which validated the potential external pollution source. The trophic level of Lake Dianshan is influenced not only by climate change but also significantly by urban human activities. The management of eutrophication has substantially improved the water quality of Lake Dianshan over the past few decades. Furthermore, increasing temperatures demonstrate a positive correlation with the proliferation of cyanobacteria, particularly in urban areas.

Keywords: climate change; eutrophication; shallow lakes (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/17/1/28/pdf (application/pdf)
https://www.mdpi.com/2071-1050/17/1/28/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:17:y:2024:i:1:p:28-:d:1551923

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:17:y:2024:i:1:p:28-:d:1551923