EconPapers    
Economics at your fingertips  
 

Analysis of Water and Sediment Changes at Different Spatial Scales and Their Attribution in the Huangfuchuan River Basin

Yan Li, Fucang Qin (), Long Li and Xiaoyu Dong
Additional contact information
Yan Li: College of Desert Control Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
Fucang Qin: College of Desert Control Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
Long Li: College of Desert Control Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
Xiaoyu Dong: College of Desert Control Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China

Sustainability, 2025, vol. 17, issue 10, 1-27

Abstract: Water–sediment evolution and attribution analysis in watersheds is one of the research focuses of hydrogeology. An in-depth investigation into the spatiotemporal variation of water and sediment at multiple spatial scales within the basin, along with a systematic assessment of the respective impacts of climate change and human activities, provides a scientific foundation for formulating effective soil and water conservation practices and integrated water resource management strategies. This research holds significant implications for the sustainable development and ecological management of the basin. In this study, the Mann–Kendall nonparametric test method, double cumulative curve method, cumulative anomaly method, and cumulative slope change rate analysis method were used to quantitatively study the effects of climate change and human activities on runoff and sediment load changes at different spatial scales in the Huangfuchuan River basin. The results show that (1) from 1966 to 2020, the annual runoff and annual sediment load discharge in the Huangfuchuan River basin showed a significant decreasing trend. Among them, the reduction in runoff and sediment in the control sub-basin of Shagedu Station in the upper reaches was more obvious than that in the whole basin. The mutation points of runoff and sediment load in the two basins were 1979 and 1998. The water–sediment relationship exhibits a power function pattern. (2) After the abrupt change, in the change period B (1980–1997), the contribution rates of climate change and human activities to runoff and sediment load reduction in the Huangfuchuan River basin were 24.12%, 75.88% and 20.05%, 79.95%, respectively. In the change period C (1998–2020), the contribution rates of the two factors to the runoff and sediment load reduction in the Huangfuchuan River basin were 18.91%, 81.09% and 15.61%, 84.39%, respectively. Among them, the influence of precipitation in the upper reaches of the Huangfuchuan River basin on the change in runoff and sediment load is higher than that of the whole basin, and the influence on the decrease of sediment load discharge is more significant before 1998. There are certain stage differences and spatial scale effects. (3) Human activities such as large-scale vegetation restoration and construction of silt dam engineering measures are the main reasons for the reduction in runoff and sediment load in the Huangfuchuan River basin and have played a greater role after 1998.

Keywords: variations in water and sediment; climate change; human activities; Huangfuchuan River basin; spatial scale (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/17/10/4389/pdf (application/pdf)
https://www.mdpi.com/2071-1050/17/10/4389/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:17:y:2025:i:10:p:4389-:d:1654077

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-06-14
Handle: RePEc:gam:jsusta:v:17:y:2025:i:10:p:4389-:d:1654077