EconPapers    
Economics at your fingertips  
 

Technical Insights into Crude Palm Oil (CPO) Production Through Water–Energy–Product (WEP) Analysis

Sofía García-Maza, Segundo Rojas-Flores and Ángel Darío González-Delgado ()
Additional contact information
Sofía García-Maza: Nanomaterials and Computer-Aided Process Engineering Research Group (NIPAC), Chemical Engineering Department, Universidad de Cartagena, Cartagena 130014, Bolivar, Colombia
Segundo Rojas-Flores: Institutos y Centros de Investigación, Universidad Cesar Vallejo, Trujillo 13001, Peru
Ángel Darío González-Delgado: Nanomaterials and Computer-Aided Process Engineering Research Group (NIPAC), Chemical Engineering Department, Universidad de Cartagena, Cartagena 130014, Bolivar, Colombia

Sustainability, 2025, vol. 17, issue 10, 1-12

Abstract: The demand for palm oil is expected to increase due to its wide use in the market. Palm oil is extracted from the fruit of the African palm tree, yielding crude palm oil (CPO) and palm kernel oil (PKO). The production process involves multiple stages, from harvesting to drying; while the problem lies in the scarcity of fresh fruit bunches and the lack of diagnosis of the process. This study proposes to carry out a WEP (Water–Energy–Product) technical assessment to optimize the use of water, energy, and raw materials in the production of CPO, calculating a series of technical parameters and indicators and determining the latter’s efficiency. The results showed that for a processing capacity of 30,000 kg/h of African palm bunches, 5070 kg/h of CPO were obtained, reaching a production yield of 69.63%, a wastewater production ratio (WPR) of 58.64 %, a fractional water consumption (FWC) of 2.38 m 3 /t of CPO, a total cost of freshwater (TCF) of 347.33 USD/day, a total cost of energy (TCE) of 13,235.95 USD/day, an energy-specific intensity (ESI) of 4905.66 MJ/t of CPO, a natural gas consumption index (NGCI) of 103,421.65 m 3 /t of CPO, an electric energy consumption index (EECI) of 165.67 kWh/t of CPO, and a net energy ratio (NER) and energy utilization index (ECI) of 165.67 kWh/t of CPO. The EUI is higher than 1. Additionally, five indicators showed an efficiency higher than 80%, highlighting the energy indicators (TCE, NGCI, and EECI), which reached the highest efficiency (95.45%) due to the predominant use of natural gas, and the water indicators (FWC and TCF), which reached 92.90% and 88.12%, respectively. Finally, improvements are required in the WPR (41.36%) and the ESI (78.13%), which merit optimization techniques using mass and energy integration, respectively.

Keywords: African palm bunch; production yield; water indicators; energy indicators; efficiency (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/17/10/4485/pdf (application/pdf)
https://www.mdpi.com/2071-1050/17/10/4485/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:17:y:2025:i:10:p:4485-:d:1655963

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-05-15
Handle: RePEc:gam:jsusta:v:17:y:2025:i:10:p:4485-:d:1655963