EconPapers    
Economics at your fingertips  
 

The Real-Time Distributed Control of Shared Energy Storage for Frequency Regulation and Renewable Energy Balancing

Yuxuan Zhuang () and Xin Fang
Additional contact information
Yuxuan Zhuang: College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China
Xin Fang: Polytechnic Institute, Zhejiang University, Hangzhou 310015, China

Sustainability, 2025, vol. 17, issue 11, 1-27

Abstract: With the increasing integration of renewable energy sources, distributed shared energy storage (DSES) systems play a critical role in enhancing power system flexibility, operational resilience, and energy sustainability. However, conventional scheduling methods often suffer from excessive communication burdens, limited scalability, and poor real-time responsiveness, especially when handling fast-changing frequency regulation signals and fluctuating renewable energy outputs. To address these challenges, this paper proposes a consensus-driven distributed online convex optimization method that enables a decentralized scheduling of energy storage units by leveraging the consensus algorithm for local decision-making while maintaining global consistency. Additionally, an adaptive event-triggered mechanism is designed to dynamically adjust the communication frequency based on system state variations, reducing redundant information exchange and ensuring convergence and stability in a fully distributed environment. Simulation results on the IEEE 14-bus test system show that the strategy reduces the communication load by 33–60% and improves the convergence speed by over 40% compared to baseline methods. It also demonstrates a strong adaptability to storage unit disconnection and reconnection. By enabling a fast and efficient response to grid services such as frequency regulation and renewable energy balancing, the proposed approach contributes to the development of intelligent and sustainable power systems.

Keywords: distributed shared energy storage; real-time frequency regulation; renewable energy balancing; adaptive event-triggered mechanism; online convex optimization; sustainable grid operation (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/17/11/4780/pdf (application/pdf)
https://www.mdpi.com/2071-1050/17/11/4780/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:17:y:2025:i:11:p:4780-:d:1662205

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-05-23
Handle: RePEc:gam:jsusta:v:17:y:2025:i:11:p:4780-:d:1662205