Start-Up Strategies for Thermophilic Semi-Continuous Anaerobic Digesters: Assessing the Impact of Inoculum Source and Feed Variability on Efficient Waste-to-Energy Conversion
Amal Hmaissia,
Edgar Martín Hernández,
Steve Boivin and
Céline Vaneeckhaute ()
Additional contact information
Amal Hmaissia: BioEngine Research Team on Green Process Engineering and Biorefineries, Chemical Engineering Department, Université Laval, Pavillon Adrien-Pouliot 1065, av. de la Médecine, Québec, QC G1V 0A6, Canada
Edgar Martín Hernández: BioEngine Research Team on Green Process Engineering and Biorefineries, Chemical Engineering Department, Université Laval, Pavillon Adrien-Pouliot 1065, av. de la Médecine, Québec, QC G1V 0A6, Canada
Steve Boivin: Centre de Biométhanisation de L’agglomération de Québec, Ville de Québec, 100 Chemin de la Baie de Beauport, Québec, QC G1N 4C3, Canada
Céline Vaneeckhaute: BioEngine Research Team on Green Process Engineering and Biorefineries, Chemical Engineering Department, Université Laval, Pavillon Adrien-Pouliot 1065, av. de la Médecine, Québec, QC G1V 0A6, Canada
Sustainability, 2025, vol. 17, issue 11, 1-22
Abstract:
Anaerobic digestion (AD) has gained broad interest as a sustainable organic waste management and resource recovery method. However, the complexity of the AD process could pose serious risks in real-scale applications. One of the most critical phases in the operation of AD systems is the start-up phase, including the seeding strategy of the digesters. This study aims to assess the effect of digestate post-treatment before seeding on the start-up of thermophilic AD systems. Two anaerobic digesters (R1 and R2) were started using two different thermophilic inocula and were kept operational for 17 weeks under identical conditions. Lab digesters were seeded with digestates sampled from a thermophilic full-scale reactor (R2) and a post-treatment mesophilic tank (R1). The start-up strategies exhibited satisfactory stability and high productivity, achieving mean weekly methane-based biodegradability rates of 61 and 64% of the feed’s theoretical biomethane potential (BMP), respectively, in R1 and R2. However, R2 showed greater resilience to high and sudden organic loads applications, making it more suitable for rapid and aggressive start-ups. These results are expected to assist full-scale anaerobic digester operators in selecting an appropriate inoculum based on the characteristics of its source.
Keywords: anaerobic digestion; sustainable; start-up; seeding strategy; thermophilic inocula; post-treatment; thermophilic (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2071-1050/17/11/5020/pdf (application/pdf)
https://www.mdpi.com/2071-1050/17/11/5020/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:17:y:2025:i:11:p:5020-:d:1668279
Access Statistics for this article
Sustainability is currently edited by Ms. Alexandra Wu
More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().