EconPapers    
Economics at your fingertips  
 

Co-Hydrothermal Carbonization of Swine Manure and Soybean Hulls: Synergistic Effects on the Potential Use of Hydrochar as a Biofuel and Soil Improver

Bryan Chiguano-Tapia (), Elena Diaz, M. Angeles de la Rubia and Angel F. Mohedano ()
Additional contact information
Bryan Chiguano-Tapia: Department of Chemical Engineering, Universidad Autonoma de Madrid, 28049 Madrid, Spain
Elena Diaz: Department of Chemical Engineering, Universidad Autonoma de Madrid, 28049 Madrid, Spain
M. Angeles de la Rubia: Department of Chemical Engineering, Universidad Autonoma de Madrid, 28049 Madrid, Spain
Angel F. Mohedano: Department of Chemical Engineering, Universidad Autonoma de Madrid, 28049 Madrid, Spain

Sustainability, 2025, vol. 17, issue 11, 1-18

Abstract: The management through co-hydrothermal carbonization (co-HTC) of swine manure (SM) and soybean hulls (SH), a by-product of animal feeding, is established as a strategy for their material and/or energy recovery. The effect of hydrothermal carbonization (HTC) temperature (210–240 °C) and mass ratio (1:0, 1:1, 1:3, 0:1) on hydrochar characteristics revealed that an improved hydrochar (C (51–59%), HHV (21–24 MJ/kg), N (~2%), S (~0.3%), and ash (<9%)) is produced with respect to hydrochar obtained from individually treated wastes. Regarding biofuel characteristics, hydrochar obtained from the SM/SH mass ratio (1:3) at 240 °C complied with the requirements of the ISO/TS 17225-8:2023 (N < 2.5%; S < 0.3%; HHV > 17 MJ/kg; ash < 12%) and showed high energy content (23.2 MJ/kg) and a greater thermal stability than the hydrochar obtained from individual wastes. Hydrochar retained relatively high amounts of nutrients such as phosphorus (6.5–9.7 g/kg), potassium (2.0–3.5 g/kg), and calcium (9–20 g/kg), which supports their use as soil improvers. Moreover, all hydrochar fulfill the standards (Spanish Royal Decrees 1051/2022, 824/2024 and EU Regulation 2019/1009) for sustainable nutrition in agriculture soils in terms of heavy metals concentration. The co-HTC of swine manure and soybean hulls demonstrated a promising transformation of waste materials into biofuel and/or soil improvers.

Keywords: fuel; amendment; agro-industrial waste; hydrothermal treatment; char (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/17/11/5022/pdf (application/pdf)
https://www.mdpi.com/2071-1050/17/11/5022/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:17:y:2025:i:11:p:5022-:d:1668335

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-05-31
Handle: RePEc:gam:jsusta:v:17:y:2025:i:11:p:5022-:d:1668335