SUQ-3: A Three Stage Coarse-to-Fine Compression Framework for Sustainable Edge AI in Smart Farming
Thavavel Vaiyapuri and
Huda Aldosari ()
Additional contact information
Thavavel Vaiyapuri: College of Computer Engineering and Sciences, Prince Sattam bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
Huda Aldosari: College of Computer Engineering and Sciences, Prince Sattam bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
Sustainability, 2025, vol. 17, issue 12, 1-23
Abstract:
Artificial intelligence of things (AIoT) has become a pivotal enabler of precision agriculture by supporting real-time, data-driven decision-making at the edge. Deep learning (DL) models are central to this paradigm, offering powerful capabilities for analyzing environmental and climatic data in a range of agricultural applications. However, deploying these models on edge devices remains challenging due to constraints in memory, computation, and energy. Existing model compression techniques predominantly target large-scale 2D architectures, with limited attention to one-dimensional (1D) models such as gated recurrent units (GRUs), which are commonly employed for processing sequential sensor data. To address this gap, we propose a novel three-stage coarse-to-fine compression framework, termed SUQ-3 (Structured, Unstructured Pruning, and Quantization), designed to optimize 1D DL models for efficient edge deployment in AIoT applications. The SUQ-3 framework sequentially integrates (1) structured pruning with an M × N sparsity pattern to induce hardware-friendly, coarse-grained sparsity; (2) unstructured pruning to eliminate low-magnitude weights for fine-grained compression; and (3) quantization, applied post quantization-aware training (QAT), to support low-precision inference with minimal accuracy loss. We validate the proposed SUQ-3 by compressing a GRU-based crop recommendation model trained on environmental and climatic data from an agricultural dataset. Experimental results show a model size reduction of approximately 85% and an 80% improvement in inference latency while preserving high predictive accuracy (F1 score: 0.97 vs. baseline: 0.9837). Notably, when deployed on a mobile edge device using TensorFlow Lite, the SUQ-3 model achieved an estimated energy consumption of 1.18 μJ per inference, representing a 74.4% reduction compared with the baseline and demonstrating its potential for sustainable low-power AI deployment in agricultural environments. Although demonstrated in an agricultural AIoT use case, the generality and modularity of SUQ-3 make it applicable to a broad range of DL models across domains requiring efficient edge intelligence.
Keywords: smart farming; lightweight 1D; dynamic pruning; quantization; QAT; AIoT; resource optimization; energy-aware deep learning; low-carbon AI (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2071-1050/17/12/5230/pdf (application/pdf)
https://www.mdpi.com/2071-1050/17/12/5230/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:17:y:2025:i:12:p:5230-:d:1673062
Access Statistics for this article
Sustainability is currently edited by Ms. Alexandra Wu
More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().