EconPapers    
Economics at your fingertips  
 

Performance Enhancement of Photovoltaic Panels Using Natural Porous Media for Thermal Cooling Management

Ismail Masalha, Omar Badran and Ali Alahmer ()
Additional contact information
Ismail Masalha: Mechanical Engineering Department, Faculty of Engineering Technology, Al–Balqa Applied University, Amman 11134, Jordan
Omar Badran: Mechanical Engineering Department, Faculty of Engineering Technology, Al–Balqa Applied University, Amman 11134, Jordan
Ali Alahmer: Department of Mechanical Engineering, Tuskegee University, Tuskegee, AL 36088, USA

Sustainability, 2025, vol. 17, issue 12, 1-32

Abstract: This study investigates the potential of low-cost, naturally available porous materials (PoMs), gravel, marble, flint, and sandstone, as thermal management for photovoltaic (PV) panels. Experiments were conducted in a controlled environment at a solar energy laboratory, where variables such as solar irradiance, ambient temperature, air velocity, and water flow were carefully regulated. A solar simulator delivering a constant irradiance of 1250 W/m 2 was used to replicate solar conditions throughout each 3 h trial. The test setup involved polycrystalline PV panels (30 W rated) fitted with cooling channels filled with PoMs of varying porosities (0.35–0.48), evaluated across water flow rates ranging from 1 to 4 L/min. Experimental results showed that PoM cooling significantly outperformed both water-only and passive cooling. Among all the materials tested, sandstone with a porosity of 0.35 and a flow rate of 2.0 L/min demonstrated the highest cooling performance, reducing the panel surface temperature by 58.08% (from 87.7 °C to 36.77 °C), enhancing electrical efficiency by 57.87% (from 4.13% to 6.52%), and increasing power output by 57.81% (from 12.42 W to 19.6 W) compared to the uncooled panel. The enhanced heat transfer (HT) was attributed to improved conductive and convective interactions facilitated by lower porosity and optimal fluid velocity. Furthermore, the cooling system improved I–V characteristics by stabilizing short-circuit current and enhancing open-circuit voltage. Comparative analysis revealed material-dependent efficacy—sandstone > flint > marble > gravel—attributed to thermal conductivity gradients (sandstone: 5 W/m·K vs. gravel: 1.19 W/m·K). The configuration with 0.35 porosity and a 2.0 L/min flow rate proved to be the most effective, offering an optimal balance between thermal performance and resource usage, with an 8–10% efficiency gain over standard water cooling. This study highlights 2.0 L/min as the ideal flow rate, as higher rates lead to increased water usage without significant cooling improvements. Additionally, lower porosity (0.35) enhances convective heat transfer, contributing to improved thermal performance while maintaining energy efficiency.

Keywords: photovoltaic cooling; porous media; thermal management; flow rate optimization; natural materials; electrical efficiency (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/17/12/5468/pdf (application/pdf)
https://www.mdpi.com/2071-1050/17/12/5468/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:17:y:2025:i:12:p:5468-:d:1678452

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-06-14
Handle: RePEc:gam:jsusta:v:17:y:2025:i:12:p:5468-:d:1678452