Provincial-Level Carbon-Reduction Potential for Agricultural Irrigation in China
Yuncheng Xu ()
Additional contact information
Yuncheng Xu: College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
Sustainability, 2025, vol. 17, issue 12, 1-22
Abstract:
Globally, agricultural irrigation accounts for the majority of freshwater use and 15% of annual agricultural greenhouse gas emissions, highlighting its critical mitigation potential amid climate change. While localized Chinese studies have analyzed the water–energy–carbon nexus, nationwide assessments of irrigation carbon-reduction potential, integrating crop water requirements, water use, and energy consumption, remain limited due to scarce longitudinal panel data. This study fills this gap by evaluating provincial-level potentials in China (2004–2020) using national/provincial statistical data on crop areas, irrigation water, energy use, and climate parameters. Findings reveal pronounced spatial–temporal variations: Henan, Heilongjiang, and Shandong exhibit the highest crop water demands (driven by rice/maize/wheat), while Heilongjiang, Jiangsu, and Guangdong show substantial water-saving opportunities. Xinjiang has the largest amount of irrigation-related carbon emissions, whereas the northeastern provinces offer the greatest reduction potential. A positive correlation between irrigation-carbon efficiency and groundwater utilization underscores the need for improved groundwater management. By linking crop water requirements to emission reductions through a nationally representative dataset, this study provides empirical evidence for region-specific strategies to enhance water-use efficiency and reduce irrigation’s environmental footprint. The findings inform policymakers on balancing agricultural productivity with sustainability goals, addressing both local water scarcity and global decarbonization imperatives.
Keywords: agricultural irrigation; carbon-reduction potential; water-saving; crop water requirement; provincial analysis in China (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2071-1050/17/12/5501/pdf (application/pdf)
https://www.mdpi.com/2071-1050/17/12/5501/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:17:y:2025:i:12:p:5501-:d:1679067
Access Statistics for this article
Sustainability is currently edited by Ms. Alexandra Wu
More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().