EconPapers    
Economics at your fingertips  
 

Influence Graph-Based Method for Sustainable Energy Systems

Nof Yasir (), Ying Huang and Di Wu ()
Additional contact information
Nof Yasir: Department of Electrical and Computer Engineering, North Dakota State University, Fargo, ND 58102, USA
Ying Huang: Department of Civil, Construction, and Environmental Engineering, North Dakota State University, Fargo, ND 58102, USA
Di Wu: Department of Electrical and Computer Engineering, North Dakota State University, Fargo, ND 58102, USA

Sustainability, 2025, vol. 17, issue 12, 1-25

Abstract: To reduce carbon emissions from fossil fuel generators in sustainable energy systems, an option is increasing the integration of gas-fired generators into the power system. The increasing reliance on natural gas for electricity generation has strengthened the interdependence between the electric power network and the natural gas infrastructure within the Integrated Power and Gas System (IPGS). This strengthened interdependence increases the risk that disruptions originating in one system may propagate to the other, potentially leading to extensive cascading failures throughout the IPGS. Ensuring the reliability of critical energy infrastructure is vital for sustainable development. This paper proposes a vulnerability assessment method for the IPGS using an influence graph, which can be formulated based on fault chain theory to capture the interactions among failed components in the IPGS. With the influence graph, eigenvector centrality is used to pinpoint the critical components in the IPGS. The proposed methodology is validated using 39-bus 29-node IPGS through the Scenario Analysis Interface for Energy Systems (SAInt) software version 3.5.17.7. Results show that the proposed method has effectively identified the most critical branches in the IPGS, which play a key role in initiating cascading failures. These insights contribute to enhancing the resilience and sustainability of interconnected energy systems.

Keywords: cascading failures; failure propagation; influence graph; infrastructure resilience; integrated power and gas system; sustainability (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/17/12/5666/pdf (application/pdf)
https://www.mdpi.com/2071-1050/17/12/5666/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:17:y:2025:i:12:p:5666-:d:1683145

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-06-20
Handle: RePEc:gam:jsusta:v:17:y:2025:i:12:p:5666-:d:1683145