Spatiotemporal Evolution and Driving Factors of Coupling Coordination Between Carbon Emission Efficiency and Carbon Balance in the Yellow River Basin
Silu Wang and
Shunyi Li ()
Additional contact information
Silu Wang: School of Economics, Guizhou University of Finance and Economics, Guiyang 550025, China
Shunyi Li: School of Economics, Guizhou University of Finance and Economics, Guiyang 550025, China
Sustainability, 2025, vol. 17, issue 13, 1-34
Abstract:
This study investigates the coupling coordination between carbon emission efficiency (CEE) and carbon balance (CB) in the Yellow River Basin (YRB), aiming to support high-quality regional development and the realization of China’s “dual carbon” goals. Based on panel data from 74 cities in the YRB between 2006 and 2022, the Super-SBM model, Ecological Support Coefficient (ESC), and coupling coordination degree (CCD) model are applied to evaluate the synergy between CEE and CB. Spatiotemporal patterns and driving mechanisms are analyzed using kernel density estimation, Moran’s I index, the Dagum Gini coefficient, Markov chains, and the XGBoost algorithm. The results reveal a generally low and declining level of CCD, with the upstream and midstream regions performing better than the downstream. Spatial clustering is evident, characterized by significant positive autocorrelation and high-high or low-low clusters. Although regional disparities in CCD have narrowed slightly over time, interregional differences remain the primary source of variation. The likelihood of leapfrog development in CCD is limited, and high-CCD regions exhibit weak spillover effects. Forest coverage is identified as the most critical driver, significantly promoting CCD. Conversely, population density, urbanization, energy structure, and energy intensity negatively affect coordination. Economic development demonstrates a U-shaped relationship with CCD. Moreover, nonlinear interactions among forest coverage, population density, energy structure, and industrial enterprise scale further intensify the complexity of CCD. These findings provide important implications for enhancing regional carbon governance and achieving balanced ecological-economic development in the YRB.
Keywords: carbon emission efficiency; carbon balance; coupling coordination degree; spatiotemporal evolution; XGBoost algorithm (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2071-1050/17/13/5975/pdf (application/pdf)
https://www.mdpi.com/2071-1050/17/13/5975/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:17:y:2025:i:13:p:5975-:d:1690352
Access Statistics for this article
Sustainability is currently edited by Ms. Alexandra Wu
More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().