EconPapers    
Economics at your fingertips  
 

The Impact of Land-Use Changes on the Spatiotemporal Dynamics of Net Primary Productivity in Harbin, China

Chaofan Zhang and Jie Liu ()
Additional contact information
Chaofan Zhang: School of Civil Engineering and Transportation, Northeast Forestry University, Harbin 150040, China
Jie Liu: School of Civil Engineering and Transportation, Northeast Forestry University, Harbin 150040, China

Sustainability, 2025, vol. 17, issue 13, 1-29

Abstract: As the global population continues to rise, the impact of urbanization on land utilization and ecosystems are growing more pronounced, particularly within the expanding area of Asia. The land use/land change (LULC) brought by urban expansion directly impacts plant growth and ecological productivity, altering the carbon cycle and climate regulation functions of the region. This research focuses on Harbin City as a case study, employing an enhanced version of the Carnegie–Ames–Stanford Approach (CASA) model to analyze the spatial–temporal variations in vegetation Net Primary Productivity (NPP) across the area from 2000 to 2020. The findings indicate that Net Primary Productivity (NPP) in Harbin exhibited notable interannual variability and spatial heterogeneity. From 2000 to 2005, a decline in NPP was observed across 60.75% of the area. This reduction was predominantly concentrated in the central and eastern areas of the city, where forested landscapes are the dominant feature. In contrast, from 2010 to 2015, 92.12% of the region saw an increase in NPP, closely related to the overall improvement in NPP across all land-use types. Land-use change significantly influenced NPP dynamics. Between 2000 and 2005, 54.26% of NPP increases stemmed from the transition of farmland into forest, highlighting the effectiveness of the “conversion of farmland back to forests” policy. From 2005 to 2010, 98.6% of the area experienced NPP decline, mainly due to forest and cropland degradation, especially the unstable carbon sink function of forest ecosystems. Between 2010 and 2015, NPP improved across 96.86% of the area, driven by forest productivity recovery and better agricultural management. These results demonstrate the profound and lasting impact of land-use transitions on the spatiotemporal dynamics of NPP.

Keywords: net primary productivity; land use/land cover; Carnegie–Ames–Stanford Approach (CASA) model; spatial and temporal changes; urban sprawl; policy (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/17/13/5979/pdf (application/pdf)
https://www.mdpi.com/2071-1050/17/13/5979/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:17:y:2025:i:13:p:5979-:d:1690430

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-06-30
Handle: RePEc:gam:jsusta:v:17:y:2025:i:13:p:5979-:d:1690430