EconPapers    
Economics at your fingertips  
 

Energy and Sustainability Impacts of U.S. Buildings Under Future Climate Scenarios

Mehdi Ghiai () and Sepideh Niknia
Additional contact information
Mehdi Ghiai: Department of Design, Texas Tech University, Lubbock, TX 79409, USA
Sepideh Niknia: Huckabee College of Architecture, Texas Tech University, Lubbock, TX 79409, USA

Sustainability, 2025, vol. 17, issue 13, 1-26

Abstract: Projected changes in outdoor environmental conditions are expected to significantly alter building energy demand across the United States. Yet, policymakers and designers lack typology and climate-zone-specific guidance to support long-term planning. We simulated 10 U.S. Department of Energy (DOE) prototype buildings across all 16 ASHRAE climate zones with EnergyPlus. Future weather files generated in Meteonorm from a CMIP6 ensemble reflected two emissions pathways (RCP 4.5 and RCP 8.5) and two planning horizons (2050 and 2080), producing 800 simulations. Envelope parameters and schedules were held at DOE reference values to isolate the pure climate signal. Results show that cooling energy use intensity (EUI) in very hot-humid Zones 1A–2A climbs by 12% for full-service restaurants and 21% for medium offices by 2080 under RCP 8.5, while heating EUI in sub-arctic Zone 8 falls by 14–20%. Hospitals and large hotels change by < 6%, showing resilience linked to high internal gains. A simple linear-regression meta-model (R 2 > 0.90) links baseline EUI to future percentage change, enabling rapid screening of vulnerable stock without further simulation. These high-resolution maps supply actionable targets for state code updates, retrofit prioritization, and long-term decarbonization planning to support climate adaptation and sustainable development.

Keywords: sustainable building design; climate adaptation; building energy simulation; environmental sustainability; emission scenarios (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/17/13/6179/pdf (application/pdf)
https://www.mdpi.com/2071-1050/17/13/6179/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:17:y:2025:i:13:p:6179-:d:1695569

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-07-06
Handle: RePEc:gam:jsusta:v:17:y:2025:i:13:p:6179-:d:1695569