EconPapers    
Economics at your fingertips  
 

Study on the Sustainability of Carbon Emission Reduction in China’s Cement Industry

Kui Zhao, Congling Bao and Bingxin Zhang ()
Additional contact information
Kui Zhao: School of Economics, Guizhou University of Finance and Economics, Guiyang 550025, China
Congling Bao: Guangdong Hualu Transport Technology Co., Ltd., Guangzhou 510420, China
Bingxin Zhang: School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang 550025, China

Sustainability, 2025, vol. 17, issue 14, 1-15

Abstract: Recycled concrete fines (RCFs) have the potential to serve as a supplementary cementitious material (SCM) after carbonation. Traditionally, carbonation of RCFs results in calcium carbonate primarily in the form of calcite, which significantly limits the development of RCFs as an SCM. In this research, a wet grinding carbonation (WGC) technique was introduced to enhance the reactivity of RCFs. The research indicates that RCFs after WGC exhibit a finer particle size and a larger specific surface area. The carbonation products include calcite with smaller grains, metastable calcium carbonate, and nanoscale silica gel and Al-Si gel. When RCF-WGC is used as an SCM in ordinary Portland cement (OPC), it significantly promotes the hydration of the cement paste, as evidenced by the advancement and increased intensity of the exothermic peaks of aluminates and silicates. RCF-WGC can significantly enhance the compressive strength of hydrated samples, particularly at early ages. Specifically, at a curing age of 1 day, the compressive strength of WGC5, WGC10, and WGC20 samples increased by 9.9%, 22.5%, and 7.7%, respectively, compared to the Ref sample (0% RCF-WGC). At a curing age of 3 days, the compressive strength of the WGC5, WGC10, and WGC20 samples showed even more significant improvements, increasing by 20.8%, 21.9%, and 11.8%, respectively. The performance enhancement of the WGC samples is attributed to the chemical reactions involving nanoscale silica gel, Al-Si gel, and calcium carbonate in the RCFs. When RCF-WGC is used as an SCM to replace 5%, 10%, and 20% of cement, it can reduce carbon emissions by 27.5 kg/t, 55 kg/t, and 110 kg/t, respectively. Large-scale application of RCFs as a high-value SCM can significantly reduce the life-cycle carbon emissions of the cement industry, contributing to the achievement of carbon peaking in China’s cement sector.

Keywords: sustainability; recycled concrete fines; supplementary cementitious materials; carbon mineralization; early-age strength; life-cycle assessment (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/17/14/6349/pdf (application/pdf)
https://www.mdpi.com/2071-1050/17/14/6349/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:17:y:2025:i:14:p:6349-:d:1699268

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-07-11
Handle: RePEc:gam:jsusta:v:17:y:2025:i:14:p:6349-:d:1699268