EconPapers    
Economics at your fingertips  
 

Testing and EDEM Simulation Analysis of Material Properties of Small Vegetable Seeds for Sustainable Seeding Process

Jiaoyang Duan, Xingrui Shi and Baolong Wang ()
Additional contact information
Jiaoyang Duan: School of Tropical Agriculture and Forestry, Hainan University, Haikou 571737, China
Xingrui Shi: School of Tropical Agriculture and Forestry, Hainan University, Haikou 571737, China
Baolong Wang: School of Tropical Agriculture and Forestry, Hainan University, Haikou 571737, China

Sustainability, 2025, vol. 17, issue 16, 1-20

Abstract: In the design of operating procedures, structures, and control systems for agricultural machinery and equipment, it is necessary to fully consider data on the properties of relevant agricultural materials as the basis for research and design. Therefore, studying the physical properties of agricultural materials is of great significance. The basic physical parameters of agricultural materials include their shape, size, density, porosity, and moisture content. This study focuses on the triaxial dimensions, 1000-grain weight, moisture content, and tribological properties (sliding friction angle, natural repose angle) of the seeds of 16 varieties of small-seeded vegetables commonly grown in Hainan, including flowering Chinese cabbage, Chinese cabbage, lettuce, and leaf lettuce. Measurements were conducted using instruments such as a digital vernier caliper (Deli, Ningbo, China; accuracy 0.01 mm), an electronic balance (LICHEN, Shanghai, China; accuracy 0.001 g), a constant-temperature oven (Shangyi, Shanghai, China), and self-developed sliding friction angle and natural repose angle testers. Discrete element simulations were performed via EDEM 2021 software to validate the tribological properties by establishing particle models (spherical for flowering Chinese cabbage and Chinese cabbage; long–flat for lettuce and leaf lettuce) and instrument geometric models. Additionally, seed germinability (germination potential, germination rate, and germination speed) was tested using a constant-temperature incubation method. The results showed distinct differences between near-spherical and long–flat seeds in geometric characteristics, 1000-grain weight (2.27–3.06 g vs. 1.00–1.29 g), and tribological behavior (e.g., smaller natural repose angles for near-spherical seeds indicating better flowability). Plastic plates were identified as optimal for seed box guides due to lower sliding friction coefficients. EDEM 2021 simulations effectively verified the experimental data. High-germination-rate seeds (e.g., Hong Kong flowering Chinese cabbage, and Lifeng No.3 Chinese cabbage) were recommended for subsequent trials. These findings provide data support for the selection, design, and optimization of seed rope braiding machine components and sustainable seeding process.

Keywords: physical properties; tribological characteristics; discrete element simulation; germinability; sustainable seeding process (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/17/16/7292/pdf (application/pdf)
https://www.mdpi.com/2071-1050/17/16/7292/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:17:y:2025:i:16:p:7292-:d:1723027

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-08-13
Handle: RePEc:gam:jsusta:v:17:y:2025:i:16:p:7292-:d:1723027