EconPapers    
Economics at your fingertips  
 

Study on Stress Testing and the Evaluation of Flood Resilience in Mountain Communities

Mingjun Yin, Hong Huang (), Fucai Yu, Aizhi Wu, Yingchun Tao and Xiaoxiao Sun
Additional contact information
Mingjun Yin: Institute of Public Safety Research, School of Safety Science, Tsinghua University, Beijing 100084, China
Hong Huang: Institute of Public Safety Research, School of Safety Science, Tsinghua University, Beijing 100084, China
Fucai Yu: Beijing Academy of Emergency Management Science and Technology, Beijing 101101, China
Aizhi Wu: Beijing Academy of Emergency Management Science and Technology, Beijing 101101, China
Yingchun Tao: Beijing Institute of Surveying and Mapping, Beijing 100038, China
Xiaoxiao Sun: Institute of Public Safety Research, School of Safety Science, Tsinghua University, Beijing 100084, China

Sustainability, 2025, vol. 17, issue 16, 1-21

Abstract: The increasing frequency and intensity of extreme weather events pose significant challenges to mountain communities, particularly in terms of flash flood risks. This study presents a framework for stress testing and evaluating flood resilience in mountain communities through the integration of high-resolution InfoWorks ICM two-dimensional hydrodynamic modeling and systematic resilience assessment. The framework makes three key innovations: (1) multi-scale temporal stress scenarios combining short-duration extreme events (1–2 h) with long-duration persistent events (24 h) and historical extremes; (2) integrated infrastructure–drainage stress analysis that explicitly models roads’ dual role as critical infrastructure and emergency drainage channels; and (3) dynamic resilience quantification under multiple stressors across 15 systematically designed stress conditions. Using Western Beijing as a case study, the model is validated, achieving Nash–Sutcliffe efficiency values exceeding 0.9, demonstrating its robust capability in simulating complex mountainous terrain flood processes. Through systematic analysis of fifteen rainfall scenarios designed based on Chicago rainfall patterns and historical events (including the July 2023 Haihe River basin flood), encompassing various intensities (30–200 mm/h), durations (1 h, 2 h, 24 h), and return periods (10, 50, 100 years), the key findings include the following: (1) A rainfall intensity of 60 mm/h represents a crucial threshold for system performance, beyond which significant impacts on community infrastructure emerge, with built-up areas experiencing inundation depths of 0.27–0.4 m that exceed safe passage limits. (2) Road networks become primary drainage channels during intense precipitation, with velocities exceeding 5 m/s in village roads and exceeding 5 m/s in country road sections, creating significant hazard potential. (3) Four major risk spots were identified with distinct waterlogging patterns, characterized by maximum depths ranging from 0.8 to 2.0 m and recovery periods varying from 2 to 12 hours depending on the topographic confluence effects and drainage efficiency. (4) The system demonstrates strong recovery capability, achieving >90% recovery within 3–6 hours for short-duration events, while showing vulnerability to extreme scenarios, with performance declining to 0.75–0.80, highlighting the coupling effects between water depth and flow velocity in steep terrain. This research provides quantitative insights for flood risk management and for enhancing community resilience in mountainous regions, offering valuable guidance for infrastructure improvement, emergency response optimization, and sustainable community development. This study primarily focuses on physical resilience aspects, with socioeconomic and institutional dimensions representing important directions for future research.

Keywords: community resilience; stress testing; mountain torrent; hydrodynamic model (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/17/16/7463/pdf (application/pdf)
https://www.mdpi.com/2071-1050/17/16/7463/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:17:y:2025:i:16:p:7463-:d:1727066

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-08-21
Handle: RePEc:gam:jsusta:v:17:y:2025:i:16:p:7463-:d:1727066