EconPapers    
Economics at your fingertips  
 

Investigating Green View Perception in Non-Street Areas by Combining Baidu Street View and Sentinel-2 Images

Hongyan Wang, Xianghong Che () and Xinru Yang
Additional contact information
Hongyan Wang: Chinese Academy of Surveying and Mapping, Beijing 100036, China
Xianghong Che: Chinese Academy of Surveying and Mapping, Beijing 100036, China
Xinru Yang: Faculty of Geosciences and Engineering, Southwest Jiaotong University, Chengdu 610031, China

Sustainability, 2025, vol. 17, issue 16, 1-23

Abstract: Urban greening distribution critically impacts residents’ quality of life and environmental sustainability. While the Green View Index (GVI), derived from street view imagery, is widely adopted for urban green space assessment, its limitation lies in the inability to capture non-street-area vegetation. Remote sensing imagery, conversely, provides full-coverage urban vegetation data. This study focuses on Beijing’s Third Ring Road area, employing DeepLabv3+ to calculate a street-view-based GVI as a predictor. Correlations between the GVI and Sentinel-2 spectral bands, along with two vegetation indices, such as the Normalized Difference Vegetation Index (NDVI) and Fractional Vegetation Cover (FVC), were analyzed under varying buffer radius. Regression and classification models were subsequently developed for GVI prediction. The optimal classifier was then applied to estimate green perception levels in non-street zones. The results demonstrated that (1) at a 25 m buffer radius, the near-infrared band, NDVI, and FVC exhibited the highest correlations with the GVI, reaching 0.553, 0.75, and 0.752, respectively. (2) Among the five machine learning regression models evaluated, the random forest algorithm demonstrated superior performance in GVI estimation, achieving a coefficient of determination (R 2 ) of 0.787, with a root mean square error (RMSE) of 0.063 and a mean absolute error (MAE) of 0.045. (3) When evaluating categorical perception levels of urban greenery, the Extremely Randomized Trees classifier (Extra Trees) demonstrated superior performance in green vision perception level estimation, achieving an accuracy (ACC) score of 0.652. (4) The green perception level in non-road areas within Beijing’s Third Ring Road is 56.8%, which is considered relatively poor. Moreover, the green perception level within the Second Ring Road is even lower than that in the area between the Second and Third Ring roads. This study is expected to provide valuable insights and references for the adjustment and optimization of green perception distribution in Beijing, thereby supporting more informed urban planning and the development of sustainable, human-centered green spaces across the city.

Keywords: urban green spaces; green view index; street view imagery; remote sensing imagery; NDVI; FVC; extremely randomized trees classification (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/17/16/7485/pdf (application/pdf)
https://www.mdpi.com/2071-1050/17/16/7485/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:17:y:2025:i:16:p:7485-:d:1727529

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-10-11
Handle: RePEc:gam:jsusta:v:17:y:2025:i:16:p:7485-:d:1727529