Technical and Economic Approaches to Design Net-Zero Energy Factories: A Case Study of a German Carpentry Factory
Pio Alessandro Lombardi ()
Additional contact information
Pio Alessandro Lombardi: Energy Systems and Infrastructures, Fraunhofer Institute for Factory Operation and Automation IFF, 39106 Magdeburg, Germany
Sustainability, 2025, vol. 17, issue 17, 1-29
Abstract:
As many German SMEs approach the end of their photovoltaic (PV) feed-in tariff period, the challenge of maintaining economic viability for these installations intensifies. This study addresses the integration of intermittent renewable energy sources (iRES) into production processes by proposing a method to identify and exploit industrial flexibility. A detailed case study of a German carpentry factory designed as a Net-Zero Energy Factory (NZEF) illustrates the approach, combining energy monitoring with blockchain technology to enhance transparency and traceability. Flexibility is exploited through a three-layer control system involving passive operator guidance, battery storage, and electric vehicle charging. The installation of a 40 kWh battery raises self-consumption from 50 to 70%, saving approximately EUR 4270 annually. However, this alone does not offset the investment. Blockchain-based transparency adds economic value by enabling premium pricing, potentially increasing revenue by up to 10%. This dual benefit supports the financial case for NZEFs. The framework is replicable and particularly relevant for low-automation industries, offering small and medium enterprises (SMEs) a viable pathway to decarbonization. The results align with the European Clean Industrial Deal, demonstrating how digitalization and industrial flexibility can reinforce competitiveness, sustainability, and digital trust in Europe’s transition to a resilient, low-carbon economy.
Keywords: blockchain technology; industrial flexibility; net-zero energy factories; renewable energy integration; sustainable manufacturing (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2071-1050/17/17/7891/pdf (application/pdf)
https://www.mdpi.com/2071-1050/17/17/7891/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:17:y:2025:i:17:p:7891-:d:1740333
Access Statistics for this article
Sustainability is currently edited by Ms. Alexandra Wu
More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().