EconPapers    
Economics at your fingertips  
 

Biodiversity Resilience in Terms of Evolutionary Mass, Velocity and Force

Richard H. Zander ()
Additional contact information
Richard H. Zander: Missouri Botanical Garden, 4344 Shaw Blvd., St. Louis, MO 63110, USA

Sustainability, 2025, vol. 17, issue 18, 1-30

Abstract: Evolutionary processes involving sustainability are here expressed in units of classical mechanics, where newly evolved traits are distance, segments of evolutionary trees are time, and species as entire character sets are mass. Data arranged on a morphological evolutionary tree (caulogram) allow precise calculations of evolutionary velocity, acceleration, momentum and force, with force interpretable as resistance to environmental change. Stem-taxon trees of species of the moss family Streptotrichaceae and Pottiaceae tribe Pleuroweisieae were developed as sets of minimally monophyletic genera, and annotated with numbers of newly evolved traits per species. Calculations provided evidence that precise and comparative measures of the results of sustainable evolutionary processes may be calculated, and, as directly derived from expressed traits, are also accurate and informative about processes leading to resilience across multiple extinction events. The two groups evidenced similar, gradual evolutionary rates, implying that similar evolutionary processes occur across 110 my for Streptotrichaceae and 66 my for Pleuroweisieae, although habitats differ. Extension of sets of new traits per species into the past imply origination of the oldest extinct recognizable progenitors near the Permian–Triassic extinction event, when a cut-off in all data imply a complete over-haul of the character set for both groups, i.e., a major change in evolutionary mass. Speciation occurs in bursts. Extinction is gradual, the negative of acceleration. The rates of origination of genera over time for both groups are nearly the same as those previously proposed for genera of extinct horses. Plateaus in graphs of species per genus imply ancient quadratic patterns of speciation. The combination of process-governed stability through stasis of morphological traits, and of resilience as the ability to survive multiple extinction events has apparently little changed, and both contribute to sustainability over geologic time.

Keywords: bryophytes; classical mechanics; evolution; evolutionary force; evolutionary rates; extinction; microgenera; morphology; speciation; structural monophyly (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/17/18/8272/pdf (application/pdf)
https://www.mdpi.com/2071-1050/17/18/8272/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:17:y:2025:i:18:p:8272-:d:1749561

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-09-16
Handle: RePEc:gam:jsusta:v:17:y:2025:i:18:p:8272-:d:1749561