Optimizing the Layout of Primary Healthcare Facilities in Harbin’s Main Urban Area, China: A Resilience Perspective
Bingbing Wang and
Ming Sun ()
Additional contact information
Bingbing Wang: School of Landscape, Northeast Forestry University, Harbin 150040, China
Ming Sun: School of Landscape, Northeast Forestry University, Harbin 150040, China
Sustainability, 2025, vol. 17, issue 19, 1-21
Abstract:
Under the dual backdrop of the Healthy China strategy and the concept of sustainable development, optimizing the spatial layout of primary healthcare facilities is important for fairly distributing healthcare resources and strengthening the resilience of the public health system in a sustainable way. This study introduces an innovative 3D spatial resilience evaluation framework, covering transmission (service accessibility), diversity (facility type matching), and stability (supply demand balance). Unlike traditional accessibility studies, the concept of “resilience” here highlights a system’s ability to adapt to sudden public health events through spatial reorganization, contrasting sharply with vulnerable systems that lack resilience. Method-wise, the study uses an improved Gaussian two-step floating catchment area method (Ga2SFCA) to measure spatial accessibility, applies a geographically weighted regression model (GWR) to analyze spatial heterogeneity factors, combines network analysis tools to assess service coverage efficiency, and uses spatial overlay analysis to identify areas with supply demand imbalances. Harbin is located in northeastern China and is the capital of Heilongjiang Province. Since Harbin is a typical central city in the northeast region, with a large population and clear regional differences, it was chosen as the case study. The case study in Harbin’s main urban area shows clear spatial differences in medical accessibility. Daoli, Nangang, and Xiangfang form a highly accessible cluster, while Songbei and Daowai show clear service gaps. The GWR model reveals that population density and facility density are key factors driving differences in service accessibility. LISA cluster analysis identifies two typical hot spots with supply demand imbalances: northern Xiangfang and southern Songbei. Finally, based on these findings, recommendations are made to increase appropriate-level medical facilities, offering useful insights for fine-tuning the spatial layout of basic healthcare facilities in similar large cities.
Keywords: spatial resilience; primary care facilities; Ga2SFCA; sustainable; accessibility; spatial fairness (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2071-1050/17/19/8706/pdf (application/pdf)
https://www.mdpi.com/2071-1050/17/19/8706/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:17:y:2025:i:19:p:8706-:d:1759830
Access Statistics for this article
Sustainability is currently edited by Ms. Alexandra Wu
More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().