EconPapers    
Economics at your fingertips  
 

The Influence of pH Environments on the Long-Term Durability of Coir Fiber-Reinforced Epoxy Resin Composites

Liangyong Li (), Juntong Wang and Tianxiang Peng
Additional contact information
Liangyong Li: School of Civil Engineering and Architectural, Hainan University, Haikou 570100, China
Juntong Wang: School of Civil Engineering and Architectural, Hainan University, Haikou 570100, China
Tianxiang Peng: School of Civil Engineering and Architectural, Hainan University, Haikou 570100, China

Sustainability, 2025, vol. 17, issue 1, 1-17

Abstract: This study investigates the effects of different pH environments on the durability of coir fiber-reinforced epoxy resin composites (CFRERCs). The CFRERCs were prepared by combining alkali-treated coir fibers with epoxy resin and exposing them to acidic, alkaline, pure water, and seawater environments for a 12-month corrosion test. The results show that an alkaline environment has the most significant impact on the tensile strength of CFRERCs, with a 55.06% reduction after 12 months. The acidic environment causes a 44.87% decrease in strength. In contrast, tensile strength decreases by 32.98% and 30.03% in pure water and seawater environments, respectively. The greatest reduction in tensile strain occurs in the alkaline environment, with a decrease of 36.45%. In the acidic environment, tensile strain decreases by about 25.56%, while in pure water and seawater, the reductions are 18.78% and 22.65%, respectively. In terms of stiffness, the alkaline environment results in a 49.51% reduction, while the acidic environment causes a 54.56% decrease. Stiffness decreases by 43.39% in pure water and 36.72% in seawater. Field emission scanning electron microscope (FE-SEM) analysis shows that corrosive agents in different pH environments cause varying degrees of damage to the microstructure of CFRERCs. In the acidic environment, corrosive agents erode the fiber–resin interface, leading to delamination and fiber breakage. In the alkaline environment, corrosive agents penetrate the fiber interior, increasing surface roughness and porosity. While pure water and seawater also cause some damage, their effects are relatively mild.

Keywords: coir fiber; epoxy resin; durability; tensile performance; pH conditions (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2025
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/17/1/364/pdf (application/pdf)
https://www.mdpi.com/2071-1050/17/1/364/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:17:y:2025:i:1:p:364-:d:1561042

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:17:y:2025:i:1:p:364-:d:1561042