EconPapers    
Economics at your fingertips  
 

Study on Spatiotemporal Pattern Evolution and Regional Heterogeneity of Carbon Emissions at the County Scale of Major Cities, Inner Mongolia Autonomous Region

Shibo Wei, Yun Xue () and Meijing Zhang
Additional contact information
Shibo Wei: School of Architecture and Art Design, Inner Mongolia University of Science and Technology, Baotou 014010, China
Yun Xue: School of Architecture and Art Design, Inner Mongolia University of Science and Technology, Baotou 014010, China
Meijing Zhang: School of Architecture and Art Design, Inner Mongolia University of Science and Technology, Baotou 014010, China

Sustainability, 2025, vol. 17, issue 20, 1-29

Abstract: In-depth exploration of the spatial heterogeneity patterns of urban carbon emissions holds significant scientific importance for regional sustainable development. However, few scholars have examined the spatiotemporal characteristics of county-level carbon emissions in Inner Mongolia. This study focuses on the three major cities of Hohhot, Baotou, and Ordos in Inner Mongolia. By integrating NPP-VIIRS nighttime light data, the CLCD (China Land Cover Dataset) dataset, and statistical yearbooks, it quantifies county-level carbon emissions and establishes a spatiotemporal analysis framework of urban morphology–carbon emissions from 2013 to 2021. Six morphological indicators—Class Area (CA), Landscape Shape Index (LSI), Largest Patch Index (LPI), Patch Cohesion Index (COHESION), Patch Density (PD), and Interspersion Juxtaposition Index (IJI)—are employed to represent urban scale, complexity, centrality, compactness, fragmentation, and adjacency, respectively, and their impacts on regional carbon emissions are examined. Using a geographically and temporally weighted regression (GTWR) model, the results indicate the following: (1) from 2013 to 2021, The high-value areas of carbon emissions in the three cities show a clustered distribution centered on the urban districts. The total carbon emissions increased from 20,670 (10 4 t/CO 2 ) to 37,788 (10 4 t/CO 2 ). The overall spatial pattern exhibits a north-to-south increasing gradient, and most areas are projected to experience accelerated carbon emission growth in the future; (2) the global Moran’s I values were all greater than zero and passed the significance tests, indicating that carbon emissions exhibit clustering characteristics; (3) the GTWR analysis revealed significant spatiotemporal heterogeneity in influencing factors, with different cities exhibiting varying directions and strengths of influence at different development stages. The ranking of influencing factors by degree of impact is: CA > LSI > COHESION > LPI > IJI > PD. This study explores urban carbon emissions and their heterogeneity from both temporal and spatial dimensions, providing a novel, more detailed regional perspective for urban carbon emission analysis. The findings enrich research on carbon emissions in Inner Mongolia and offer theoretical support for regional carbon reduction strategies.

Keywords: county scale; urban spatial form; carbon emissions; spatiotemporal evolution; geographically and temporally weighted regression; Hohhot-Baotou-Ordos (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/17/20/9222/pdf (application/pdf)
https://www.mdpi.com/2071-1050/17/20/9222/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:17:y:2025:i:20:p:9222-:d:1773984

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-10-18
Handle: RePEc:gam:jsusta:v:17:y:2025:i:20:p:9222-:d:1773984