EconPapers    
Economics at your fingertips  
 

Integrating Ecosystem Services and Key Species Distribution to Construct a Sustainable Ecological Security Pattern in a Plateau Urban Agglomeration

Pinjie Luo, Yuhong Song () and Wei-Ling Hsu
Additional contact information
Pinjie Luo: School of Civil Engineering, Jiaying University, Meizhou 514015, China
Yuhong Song: College of Landscape Architecture and Horticulture Science, Southwest Forestry University, Kunming 650224, China
Wei-Ling Hsu: School of Civil Engineering, Jiaying University, Meizhou 514015, China

Sustainability, 2025, vol. 17, issue 21, 1-28

Abstract: Urban agglomerations in plateau regions often face severe landscape fragmentation and cross-boundary ecological pressures, highlighting the need for coordinated eco-logical planning for sustainable urban development. We coupled species–landscape interactions and multi-ecological services to construct sustainable ecological security patterns (ESPs) and establish a collaborative optimization framework. Specifically, we integrated MaxEnt-derived habit suitability with InVEST-based ecosystem services to identify ecological sources (ESs) and analysis the environmental impacts on species distribution. Based on this, we built a multi-factor resistance surface and employed circuit theory to extract ecological corridors (ECs) and critical nodes (pinch points and barrier points). Then, we quantitatively compared two simulated scenarios (barrier points restoration and stepping stone augmentation) to assess the spatial priority of ecological nodes. We identified 48 ESs (26,410.48 km 2 , mainly distributed in Chuxiong, Yuxi, Honghe, and Kunming), 115 ECs (2670.02 km, with a west-dense and east-sparse spatial pattern), 43 pinch points, and 39 barrier points. Scenario simulation shows that repairing 39 barrier nodes increases network connectivity by an average of 33.52% and global network efficiency by 19.44%, whereas adding steeping stones yields improvements of 20.09% and 5.56%, respectively, indicating that barrier-node restoration produces larger contribution in both connectivity and efficiency at the global scale. Leveraging EN construction and scenario simulation, we developed an ESP-based sustainable framework for collaborative optimization in plateau urban agglomerations. The framework specifies agglomeration-specific coordination pathways, which are expected to provide a transferable blueprint for biodiversity conservation, ecosystem optimization, and sustainable development.

Keywords: ecological security pattern (ESP); plateau urban agglomeration; collaborative spatial optimization; scenario simulation; ecosystem services (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/17/21/9670/pdf (application/pdf)
https://www.mdpi.com/2071-1050/17/21/9670/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:17:y:2025:i:21:p:9670-:d:1783460

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-11-07
Handle: RePEc:gam:jsusta:v:17:y:2025:i:21:p:9670-:d:1783460