EconPapers    
Economics at your fingertips  
 

Banana Yield Prediction Using Random Forest, Integrating Phenology Data, Soil Properties, Spectral Technology, and UAV Imagery in the Ecuadorian Littoral Region

Danilo Yánez-Cajo (), Gregorio Vásconez-Montúfar, Ronald Oswaldo Villamar-Torres, Luis Godoy-Montiel, Seyed Mehdi Jazayeri, Fernando Pérez-Porras and Francisco Mesas-Carrascosa
Additional contact information
Danilo Yánez-Cajo: Facultad de Ciencias Pecuarias y Biológicas, Universidad Técnica Estatal de Quevedo, Campus La María, Quevedo P.O. Box EC120550, Ecuador
Gregorio Vásconez-Montúfar: Facultad de Ciencias Pecuarias y Biológicas, Universidad Técnica Estatal de Quevedo, Campus La María, Quevedo P.O. Box EC120550, Ecuador
Ronald Oswaldo Villamar-Torres: Facultad de Ciencias Pecuarias y Biológicas, Universidad Técnica Estatal de Quevedo, Campus La María, Quevedo P.O. Box EC120550, Ecuador
Luis Godoy-Montiel: Facultad de Ciencias Pecuarias y Biológicas, Universidad Técnica Estatal de Quevedo, Campus La María, Quevedo P.O. Box EC120550, Ecuador
Seyed Mehdi Jazayeri: ERIT PSII—Plant Science, Interactions and Innovation, Institut Agrosciences, Environnement, et Santé (AgES), Avignon Université, 84029 Avignon, France
Fernando Pérez-Porras: Department of Graphic Engineering and Geomatics, University of Cordoba, Campus de Rabanales, 14014 Córdoba, Spain
Francisco Mesas-Carrascosa: Department of Graphic Engineering and Geomatics, University of Cordoba, Campus de Rabanales, 14014 Córdoba, Spain

Sustainability, 2025, vol. 17, issue 22, 1-20

Abstract: Accurate banana yield prediction is essential for optimizing agricultural management and ensuring food security in tropical regions, yet traditional estimation methods remain labor-intensive and error prone. This study developed a predictive model for banana yield in Buena Fé, Ecuador, using Random Forest integrated with phenological data, soil properties, spectral technology, and UAV imagery. Data were collected from a 75.2 ha banana farm divided into 26 lots, combining multispectral drone imagery, soil physicochemical analyses, and banana agronomic measurements (height, diameter, bunch weight). A rigorous variable selection process identified six key predictors: NDVI, plant height, plant diameter, soil nitrogen, porosity, and slope. Three machine learning algorithms were compared through 5-fold cross-validation with systematic hyperparameter optimization. Random Forest demonstrated superior performance, with R 2 = 0.956 and RMSE=1164.9 kg ha −1 , representing only CV = 2.79% of mean production. NDVI emerged as the most influential predictor (importance = 0.212), followed by slope (0.184) and plant structural variables. Local sensitivity analysis revealed distinct response patterns between low- and high-production scenarios, with plant diameter showing the greatest impact (+74.9 boxes ha −1 ) under limiting conditions, while NDVI dominated (−140.4 boxes ha −1 ) under optimal conditions. The model provides a robust tool for precision agriculture applications in tropical banana production systems.

Keywords: banana; UAV; Random Forest; Ecuadorian littoral region; soil properties; yield (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/17/22/10098/pdf (application/pdf)
https://www.mdpi.com/2071-1050/17/22/10098/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:17:y:2025:i:22:p:10098-:d:1792697

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-11-18
Handle: RePEc:gam:jsusta:v:17:y:2025:i:22:p:10098-:d:1792697