EconPapers    
Economics at your fingertips  
 

Investigating Spatial Variation Characteristics and Influencing Factors of Urban Green View Index Based on Street View Imagery—A Case Study of Luoyang, China

Junhui Hu, Yang Du, Yueshan Ma (), Danfeng Liu and Luyao Chen
Additional contact information
Junhui Hu: School of Civil Engineering and Architecture, Henan University of Science and Technology, Luoyang 471000, China
Yang Du: School of Civil Engineering and Architecture, Henan University of Science and Technology, Luoyang 471000, China
Yueshan Ma: School of Civil Engineering and Architecture, Henan University of Science and Technology, Luoyang 471000, China
Danfeng Liu: School of Civil Engineering and Architecture, Henan University of Science and Technology, Luoyang 471000, China
Luyao Chen: School of Civil Engineering and Architecture, Henan University of Science and Technology, Luoyang 471000, China

Sustainability, 2025, vol. 17, issue 22, 1-21

Abstract: As a key indicator for measuring urban green visibility, the Green View Index (GVI) reflects actual visible greenery from a human perspective, playing a vital role in assessing urban greening levels and optimizing green space layouts. Existing studies predominantly rely on single-source remote sensing image analysis or traditional statistical regression methods such as Ordinary Least Squares and Geographically Weighted Regression. These approaches struggle to capture spatial variations in human-perceived greenery at the street level and fail to identify the non-stationary effects of different drivers within localized areas. This study focuses on the Luolong District in the central urban area of Luoyang City, China. Utilizing Baidu Street View imagery and semantic segmentation technology, an automated GVI extraction model was developed to reveal its spatial differentiation characteristics. Spearman correlation analysis and Multiscale Geographically Weighted Regression were employed to identify the dominant drivers of GVI across four dimensions: landscape pattern, vegetation cover, built environment, and accessibility. Field surveys were conducted to validate the findings. The Multiscale Geographically Weighted Regression method allows different variables to have distinct spatial scales of influence in parameter estimation. This approach overcomes the limitations of traditional models in revealing spatial non-stationarity, thereby more accurately characterizing the spatial response mechanism of the Global Vulnerability Index (GVI). Results indicate the following: (1) The study area’s average GVI is 15.24%, reflecting a low overall level with significant spatial variation, exhibiting a “polar core” distribution pattern. (2) Fractal dimension, normalized vegetation index (NDVI), enclosure index, road density, population density, and green space accessibility positively influence GVI, while connectivity index, Euclidean nearest neighbor distance, building density, residential density, and water body accessibility negatively affect it. Among these, NDVI and enclosure index are the most critical factors. (3) Spatial influence scales vary significantly across factors. Euclidean nearest neighbor distance, building density, population density, green space accessibility, and water body accessibility exert global effects on GVI, while fractal dimension, connectivity index, normalized vegetation index, enclosure index, road density, and residential density demonstrate regional dependence. Field survey results confirm that the analytical conclusions align closely with actual greening conditions and socioeconomic characteristics. This study provides data support and decision-making references for green space planning and human habitat optimization in Luoyang City while also offering methodological insights for evaluating urban street green view index and researching ecological spatial equity.

Keywords: street view imagery; green view rate; spatial differentiation characteristics; influencing factors; Luoyang (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/17/22/10208/pdf (application/pdf)
https://www.mdpi.com/2071-1050/17/22/10208/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:17:y:2025:i:22:p:10208-:d:1794987

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-11-18
Handle: RePEc:gam:jsusta:v:17:y:2025:i:22:p:10208-:d:1794987