Spatiotemporal Interpolation of Actual Evapotranspiration Across Turkey Using the Australian National University Spline Model: Insights into Its Relationship with Vegetation Cover
İsmet Yener ()
Additional contact information
İsmet Yener: Department of Forest Engineering, Faculty of Forestry, Artvin Coruh University, Artvin 08100, Turkey
Sustainability, 2025, vol. 17, issue 2, 1-28
Abstract:
Accurate and precise prediction of actual evapotranspiration (AET) on a large scale is a fundamental issue in natural sciences such as forestry (especially in species selection and planning), hydrology, and agriculture. With the estimation of AET, controlling dams, agriculture, and irrigation and providing potable and utility water supply for industry would be possible. Gathering reliable AET data is possible only with a sufficient weather station network, which is rarely established in many countries like Turkey. Therefore, climate models must be developed for reliable AET data, especially in countries with complex terrains. This study aimed to generate spatiotemporal AET surfaces using the Australian National University spline (ANUSPLIN) model and compare the results with the maps generated by the inverse distance weighting (IDW) and co-kriging (KRG) interpolation techniques. Findings from the interpolated surfaces were validated in three ways: (1) some diagnostics from the surface fitting model include measures such as signal, mean, root mean square predictive error, root mean square error estimate, root mean square residual of the spline, and the estimated standard deviation of noise in the spline; (2) a comparison of common error statistics between the interpolated surfaces and withheld climate data; and (3) evaluation by comparing model results with other interpolation methods using metrics such as mean absolute error, mean error, root mean square error, and adjusted R 2 (R 2 adj ). The correlation between AET and normalized difference vegetation index (NDVI) was also evaluated. ANUSPLIN outperformed the other techniques, accounting for 73 to 94% (RMSE: 3.7 to 26.1%) of the seasonal variation in AET with an annual value of 83% (RMSE: 10.0%). The correlation coefficient between observed and predicted AET based on NDVI ranged from 0.49 to 0.71 for point-based and 0.62 to 0.83 for polygon-based data. The generated maps at a spatial resolution of 0.005° × 0.005° could provide valuable insights to researchers and practitioners in the natural resources management domain.
Keywords: ANUSPLIN; IDW; kriging; NDVI; biome; climate change; evapotranspiration (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2071-1050/17/2/430/pdf (application/pdf)
https://www.mdpi.com/2071-1050/17/2/430/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:17:y:2025:i:2:p:430-:d:1562571
Access Statistics for this article
Sustainability is currently edited by Ms. Alexandra Wu
More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().