EconPapers    
Economics at your fingertips  
 

An Ensemble Approach to Predict a Sustainable Energy Plan for London Households

Niraj Buyo, Akbar Sheikh-Akbari () and Farrukh Saleem
Additional contact information
Niraj Buyo: School of Built Environment, Engineering and Computing, Leeds Beckett University, Leeds LS6 3QR, UK
Akbar Sheikh-Akbari: School of Built Environment, Engineering and Computing, Leeds Beckett University, Leeds LS6 3QR, UK
Farrukh Saleem: School of Built Environment, Engineering and Computing, Leeds Beckett University, Leeds LS6 3QR, UK

Sustainability, 2025, vol. 17, issue 2, 1-30

Abstract: The energy sector plays a vital role in driving environmental and social advancements. Accurately predicting energy demand across various time frames offers numerous benefits, such as facilitating a sustainable transition and planning of energy resources. This research focuses on predicting energy consumption using three individual models: Prophet, eXtreme Gradient Boosting (XGBoost), and long short-term memory (LSTM). Additionally, it proposes an ensemble model that combines the predictions from all three to enhance overall accuracy. This approach aims to leverage the strengths of each model for better prediction performance. We examine the accuracy of an ensemble model using Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and Root Mean Square Error (RMSE) through means of resource allocation. The research investigates the use of real data from smart meters gathered from 5567 London residences as part of the UK Power Networks-led Low Carbon London project from the London Datastore. The performance of each individual model was recorded as follows: 62.96% for the Prophet model, 70.37% for LSTM, and 66.66% for XGBoost. In contrast, the proposed ensemble model, which combines LSTM, Prophet, and XGBoost, achieved an impressive accuracy of 81.48%, surpassing the individual models. The findings of this study indicate that the proposed model enhances energy efficiency and supports the transition towards a sustainable energy future. Consequently, it can accurately forecast the maximum loads of distribution networks for London households. In addition, this work contributes to the improvement of load forecasting for distribution networks, which can guide higher authorities in developing sustainable energy consumption plans.

Keywords: ensemble model; LSTM; Prophet; XGBoost; energy load forecasting; time series analysis; sustainable energy plan (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/2071-1050/17/2/500/pdf (application/pdf)
https://www.mdpi.com/2071-1050/17/2/500/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:17:y:2025:i:2:p:500-:d:1564184

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-04-05
Handle: RePEc:gam:jsusta:v:17:y:2025:i:2:p:500-:d:1564184