EconPapers    
Economics at your fingertips  
 

Navigation Path Prediction for Farmland Road Intersections Based on Improved Context Guided Network

Xuyan Li () and Zhibo Wu
Additional contact information
Xuyan Li: School of Electrical and Control Engineering, North University of China, Taiyuan 030051, China
Zhibo Wu: School of Electrical and Control Engineering, North University of China, Taiyuan 030051, China

Sustainability, 2025, vol. 17, issue 2, 1-15

Abstract: Agricultural navigation, as an essential part of smart agriculture, is a crucial step in realizing intelligence and, compared with the structured features of urban roads, such as lane-keeping lines, traffic guidance lines, etc., the field environment is more complex. Especially at agricultural intersections, traditional navigation line extraction algorithms make it difficult to achieve the automatic prediction of multiple road navigation lines due to complex unstructured features such as weeds and trees. Therefore, this study proposed a field road navigation line prediction method based on an improved context guided network (CGNet), which can quickly, stably, and accurately detect intersection fields and promptly predict navigation lines for two different directional paths at intersections. Firstly, CGNet will be used to learn the local features of intersections and the joint features of video frames before and after the surrounding environment. Then, the CGNet with a self-attention block module is proposed by adding the self-attention mechanism to improve the semantic segmentation accuracy of CGNet in field road scenes, and the detection speed is not significantly reduced. The semantic segmentation accuracy mIoU is 0.89, and the processing speed is 104 FPS. Subsequently, a field road centerline extraction algorithm is proposed based on the partitioning idea, which can accurately obtain the centerlines of road intersections in the image. The average lateral deviation of each centerline is less than 4%. This study achieved the prediction of intersection navigation lines in mountainous field road scenes, which can provide technical support for field operation road planning of agricultural equipment such as plant protection and harvesting. At the same time, the research findings provide theoretical references for sustainable agricultural development.

Keywords: multi-path prediction; sustainable agricultural intelligence; context grid network; navigation path; road intersection detection; self-attention block (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/17/2/753/pdf (application/pdf)
https://www.mdpi.com/2071-1050/17/2/753/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:17:y:2025:i:2:p:753-:d:1570364

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-04-05
Handle: RePEc:gam:jsusta:v:17:y:2025:i:2:p:753-:d:1570364