EconPapers    
Economics at your fingertips  
 

Piranha Foraging Optimization Algorithm with Deep Learning Enabled Fault Detection in Blockchain-Assisted Sustainable IoT Environment

Haitham Assiri ()
Additional contact information
Haitham Assiri: Department of Computer Science, College of Engineering and Computer Sciences, Jazan University, Jazan 45142, Saudi Arabia

Sustainability, 2025, vol. 17, issue 4, 1-24

Abstract: As the acceptance of Internet of Things (IoT) systems quickens, guaranteeing their sustainability and reliability poses an important challenge. Faults in IoT systems can result in resource inefficiency, high energy consumption, reduced security, and operational downtime, obstructing sustainability goals. Thus, blockchain (BC) technology, known for its decentralized and distributed characteristics, can offer significant solutions in IoT networks. BC technology provides several benefits, such as traceability, immutability, confidentiality, tamper proofing, data integrity, and privacy, without utilizing a third party. Recently, several consensus algorithms, including ripple, proof of stake (PoS), proof of work (PoW), and practical Byzantine fault tolerance (PBFT), have been developed to enhance BC efficiency. Combining fault detection algorithms and BC technology can result in a more reliable and secure IoT environment. Thus, this study presents a sustainable BC-Driven Edge Verification with a Consensus Approach-enabled Optimal Deep Learning (BCEVCA-ODL) approach for fault recognition in sustainable IoT environments. The proposed BCEVCA-ODL technique incorporates the merits of the BC, IoT, and DL techniques to enhance IoT networks’ security, trustworthiness, and efficacy. IoT devices have a substantial level of decentralized decision-making capacity in BC technology to achieve a consensus on the accomplishment of intrablock transactions. A stacked sparse autoencoder (SSAE) model is employed to detect faults in IoT networks. Lastly, the Piranha Foraging Optimization Algorithm (PFOA) approach is used for optimum hyperparameter tuning of the SSAE approach, which assists in enhancing the fault recognition rate. A wide range of simulations was accomplished to highlight the efficacy of the BCEVCA-ODL technique. The BCEVCA-ODL technique achieved a superior FDA value of 100% at a fault probability of 0.00, outperforming the other evaluated methods. The proposed work highlights the significance of embedding sustainability into IoT systems, underlining how advanced fault detection can provide environmental and operational benefits. The experimental outcomes pave the way for greener IoT technologies that support global sustainability initiatives.

Keywords: blockchain; sustainability; Internet of Things; deep learning; hyperparameter tuning; consensus algorithm (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/17/4/1362/pdf (application/pdf)
https://www.mdpi.com/2071-1050/17/4/1362/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:17:y:2025:i:4:p:1362-:d:1585815

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:17:y:2025:i:4:p:1362-:d:1585815