Exploring Geochemical Characteristics of Composite Geothermal Reservoirs for Sustainable Utilization: A Case Study of the Northwestern Shandong Geothermal Area in China
Yong Qiao,
Man Li (),
Long Chen,
Hanxiong Zhang and
Wei Zhang
Additional contact information
Yong Qiao: China Renewable Energy Engineering Institute, Beijing 100120, China
Man Li: Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China
Long Chen: Guiyang Engineering Corporation Limited, Guiyang 553304, China
Hanxiong Zhang: Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China
Wei Zhang: Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China
Sustainability, 2025, vol. 17, issue 5, 1-23
Abstract:
Presently, geothermal resources have been globally recognized as an indispensable component of the energy system due to their sustainability. However, previous studies on geothermal reservoirs focus primarily on single reservoirs, lacking a systematic investigation of composite geothermal reservoirs. The geothermal reservoirs in the northwestern Shandong geothermal area in China are primarily of sandstone and karst types, characterized by extensive distributions, shallow burial depths, high water temperatures, and high water abundance, holding considerable potential for exploitation. This study explored the hydrochemical, isotopic, and circulation characteristics of geothermal fluids in the composite geothermal reservoirs in the study area using methods like hydrogeochemistry and geothermal geology. The purpose is to determine the geochemical differences in geothermal fluids across the composite geothermal reservoirs and provide scientific support for subsequently efficient and sustainable exploitation and utilization of geothermal resources in the study area. The composite geothermal reservoirs in the study area are composed of porous sandstone geothermal reservoirs (also referred to as sandstone reservoirs) in the upper part and karst-fissured geothermal reservoirs (also referred to as karst reservoirs) in the lower part. The results show that the geothermal fluids in the sandstone and karst reservoirs are primarily of Na-Cl-SO 4 and Na-Ca-Cl-SO 4 types, respectively. The hydrochemical composition of geothermal fluids in the karst reservoirs is principally influenced by the precipitation–dissolution equilibrium of carbonate and sulfate minerals, while that in the sandstone reservoirs is predominantly influenced by the precipitation–dissolution equilibrium of carbonate and silicate minerals, as well as cation exchange reactions. The temperatures of the karst reservoirs were calculated at 52.9–82.09 °C using geothermometers. Given the cold-water mixing ratios range from 89% to 96%, the corrected reservoir temperatures vary from 200 to 225 °C. In contrast, the temperatures of the sandstone reservoirs were calculated at 60.54–85.88 °C using geothermometers. These reservoirs exhibit cold water mixing ratios ranging from 85% to 90%, and their corrected reservoir temperatures vary from 150 to 200 °C accordingly. The circulation depths of geothermal fluids in the karst and sandstone reservoirs range from 1107.28 to 1836.69 m and from 1366.60 to 2102.29 m, respectively. The study area is primarily recharged by meteoric water from Mount Tai and the Lushan and Yishan mountains (collectively referred to as the Tai-Lu-Yi mountains) to the southeast of the study area. Investigating the differences in geochemical characteristics of geothermal fluids in composite geothermal reservoirs in the study area is significant for balancing the exploitation and supply of geothermal resources, optimizing the exploitation and utilization modes, and promoting the efficient and sustainable exploitation and utilization of geothermal resources in the study area.
Keywords: geothermal energy; composite geothermal reservoirs; geochemical characterization; sustainable utilization (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2071-1050/17/5/2252/pdf (application/pdf)
https://www.mdpi.com/2071-1050/17/5/2252/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:17:y:2025:i:5:p:2252-:d:1605791
Access Statistics for this article
Sustainability is currently edited by Ms. Alexandra Wu
More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().