EconPapers    
Economics at your fingertips  
 

Valorization of Bioactive Compounds Extracted from Brewer’s Spent Grain (BSG) for Sustainable Food Waste Recycling

Hao-Yu Ivory Chu, Taghi Miri () and Helen Onyeaka
Additional contact information
Hao-Yu Ivory Chu: School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
Taghi Miri: School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
Helen Onyeaka: School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK

Sustainability, 2025, vol. 17, issue 6, 1-17

Abstract: In parallel with the worldwide issues of malnutrition and food waste, society at large focuses on the advantages of ‘recycling’ food waste. Brewer’s spent grain (BSG), a primary byproduct of the brewing industry, is produced in large quantities in many regions of the world, leading to environmental issues. The present study aimed at valorizing BSG through bioactive compound extraction using more traditional approaches, including Soxhlet extraction, recrystallization, and salting-out adsorption for proteins and lactic purification. The extraction rate of total dietary fiber (TDF) was 93.3%. FTIR analysis showed specific structural vibrations of fiber with C-O and C-O-C attachments in hemicellulose, C-H bends in lignin, and various bending patterns in tannins and fatty acid esters. Hemicellulose (8245.2 mg/L), lignin (10,432.4 mg/L), and cellulose (13,245.4 mg/L) were extracted with rates of 54.9%, 69.5%, and 88.3%, respectively. These bioactive compounds extracted from BSG could be utilized in food and nutraceutical products based on their purity. The analysis of extracted bioactive components confirmed the presence of arachidic acid (C20:0), oleic acid (C18:1), linoleic acid (C18:2), myristic acid (C14:0), pentacyclic acid (C30:0), palmitic acid (C16:0), margaric acid (C17:0), gallic acid, catechol, ellagic acid, acetyl sialic acid, benzoic acid, and vanillin. These findings highlight the valorization potential of BSG, a previously regarded waste material, as a source of active biocomponents. This is consistent with the principles of the circular economy by reducing waste in the environment and supporting tangible sustainability in food systems. The efforts made in the current study in utilizing BSG are part of the fast-growing area of food waste recycling and provide a way to avoid waste and create added value.

Keywords: brewer’s spent grain (BSG); bioactive compounds; circular economy; food waste recycling; sustainability; waste valorization; nutrient recovery (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/17/6/2477/pdf (application/pdf)
https://www.mdpi.com/2071-1050/17/6/2477/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:17:y:2025:i:6:p:2477-:d:1610227

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-04-05
Handle: RePEc:gam:jsusta:v:17:y:2025:i:6:p:2477-:d:1610227