Multi-Objective Optimal Energy Management Strategy for Grid-Interactive Hydrogen Refueling Stations in Rural Areas
Burak Şafak and
Alper Çiçek ()
Additional contact information
Burak Şafak: Department of Electrical and Electronics Engineering, Faculty of Engineering, Trakya University, Edirne 22030, Türkiye
Alper Çiçek: Department of Electrical and Electronics Engineering, Faculty of Engineering, Trakya University, Edirne 22030, Türkiye
Sustainability, 2025, vol. 17, issue 6, 1-20
Abstract:
The transportation sector is a significant contributor to global carbon emissions, thus necessitating a transition toward renewable energy sources (RESs) and electric vehicles (EVs). Among EV technologies, fuel-cell EVs (FCEVs) offer distinct advantages in terms of refueling time and operational efficiency, thus rendering them a promising solution for sustainable transportation. Nevertheless, the integration of FCEVs in rural areas poses challenges due to the limited availability of refueling infrastructure and constraints in energy access. In order to address these challenges, this study proposes a multi-objective energy management model for a hydrogen refueling station (HRS) integrated with RESs, a battery storage system, an electrolyzer (EL), a fuel cell (FC), and a hydrogen tank, serving diverse FCEVs in rural areas. The model, formulated using mixed-integer linear programming (MILP), optimizes station operations to maximize both cost and load factor performance. Additionally, bi-directional trading with the power grid and hydrogen network enhances energy flexibility and grid stability, enabling a more resilient and self-sufficient energy system. To the best of the authors’ knowledge, this study is the first in the literature to present a multi-objective optimal management approach for grid-interactive, renewable-supported HRSs serving hydrogen-powered vehicles in rural areas. The simulation results demonstrate that RES integration improves economic feasibility by reducing costs and increasing financial gains, while maximizing the load factor enhances efficiency, cost-driven strategies that may impact stability. The impact of the EL on cost is more significant, while RES capacity has a relatively smaller effect on cost. However, its influence on the load factor is substantial. The optimization of RES-supported hydrogen production has been demonstrated to reduce external dependency, thereby enabling surplus trading and increasing financial gains to the tune of USD 587.83. Furthermore, the system enhances sustainability by eliminating gasoline consumption and significantly reducing carbon emissions, thus supporting the transition to a cleaner and more efficient transportation ecosystem.
Keywords: bi-directional grid-interactive system; hydrogen energy system; hydrogen refueling station; load factor; multi-objective optimal operation; rural area (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2071-1050/17/6/2663/pdf (application/pdf)
https://www.mdpi.com/2071-1050/17/6/2663/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:17:y:2025:i:6:p:2663-:d:1614318
Access Statistics for this article
Sustainability is currently edited by Ms. Alexandra Wu
More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().