Efficiency Evaluation of a Photovoltaic-Powered Water Treatment System with Natural Sedimentation Pretreatment for Arsenic Removal in High Water Vulnerability Areas: Application in La Yarada Los Palos District, Tacna, Peru
Luis Johnson Paúl Mori Sosa ()
Additional contact information
Luis Johnson Paúl Mori Sosa: Faculty of Engineering, National University Jorge Basadre Grohmann, Tacna 23000, Peru
Sustainability, 2025, vol. 17, issue 7, 1-42
Abstract:
Arsenic contamination poses a severe health risk in regions with high water vulnerability and limited treatment infrastructure. This study evaluates a photovoltaic-powered water treatment system for arsenic removal in La Yarada Los Palos District, Tacna, Peru, where arsenic concentrations reached up to 0.0417 mg/L, significantly surpassing the World Health Organization (WHO) limit of 10 µg/L (0.01 mg/L) for drinking water. The system integrates a natural sedimentation pretreatment stage in a geomembrane-lined reservoir, followed by oxidation with sodium hypochlorite, coagulation, and adsorption. Arsenic removal efficiencies ranged from 99.72% to 99.85%, reducing residual concentrations below WHO guidelines. Pretreatment significantly improved performance, reducing turbidity by up to 66.67% and TSS by up to 70.37%, optimizing subsequent treatment stages. Operationally, pretreatment decreased cleaning frequency from six to four cleanings per month, while backwashing energy consumption dropped by 33% (from 45.72 kWh to 30.48 kWh). The photovoltaic system leveraged the region’s high solar radiation, achieving an average daily generation of 20.31 kWh and an energy surplus of 33.08%. The system’s performance was evaluated within the context of existing arsenic removal technologies, demonstrating that the integration of natural sedimentation and renewable energy constitutes a viable operational alternative. Given the regulatory framework in Peru, where arsenic limits align with WHO standards, conventional water treatment systems are normatively and technically unfeasible under national legislation. Furthermore, La Yarada Los Palos District faces challenges due to its limited infrastructure for conventional electrification via power grid, as identified in national reports on rural electrification and gaps in access to basic services. Beyond its performance in the study area, the system’s modular design allows adaptation to diverse water sources with varying arsenic concentrations, turbidity levels, and other physicochemical characteristics. In remote regions with limited access to the power grid, such as the study site, photovoltaic energy provides a self-sustaining and replicable alternative, particularly in arid and semi-arid areas with high solar radiation. These conditions are not exclusive to Latin America but are also prevalent in remote regions of Africa, the Middle East, Asia, and Oceania, where groundwater arsenic contamination is a significant issue and renewable energy availability can enhance water treatment sustainability. These findings underscore the potential of using sustainable energy solutions to address water contamination challenges in remote areas. The modular and scalable design of this system enables its replication in regions with adverse hydrogeological conditions, integrating renewable energy and pretreatment strategies to enhance water treatment performance. The framework presented in this study offers a replicable and efficient approach for implementing eco-friendly water treatment systems in regions with similar environmental and resource constraints.
Keywords: arsenic removal; arsenic speciation; high water vulnerability areas; photovoltaic water treatment; pretreatment sedimentation; sustainable energy solutions (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2071-1050/17/7/2987/pdf (application/pdf)
https://www.mdpi.com/2071-1050/17/7/2987/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:17:y:2025:i:7:p:2987-:d:1622135
Access Statistics for this article
Sustainability is currently edited by Ms. Alexandra Wu
More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().