Eco-Friendly Lightweight Aggregate Concrete of Structural Grade Made with Recycled Brick Aggregate Containing Expanded Polystyrene Beads
Bogdan Rosca ()
Additional contact information
Bogdan Rosca: Faculty of Civil Engineering and Building Services, Gh. Asachi Technical University, 700050 Iasi, Romania
Sustainability, 2025, vol. 17, issue 7, 1-20
Abstract:
The quantity of construction demolition waste (CDW) has been increasing due to the demolition of many old buildings throughout the world. So far, all the statistics indicate that there is a very large generation of CDW, which increases annually. The increasing amount CDW in landfills will cause a scarcity of landfill space and will also increase pollution and cost due to transportation. Recycled brick aggregate concrete (RBAC) incorporating polystyrene (EPS) aggregate beads has emerged as an alternative lightweight material with numerous obvious sustainable benefits, suitable for a future circular economy. The goal of this paper is to assess the feasibility of obtaining lightweight aggregate concrete of structural grade with recycled brick aggregate (RBA) as a coarse aggregate and the incorporation of polystyrene beads in a certain percentage by conducting an experimental study on the dry and apparent density, compressive strength, split-tensile strength and elasticity modulus. In addition, the effects of the w/c ratio and cement content on these properties were studied to provide useful information for the performance optimization of this concrete with RBA and polystyrene (EPS) beads. The properties were investigated for two cement contents, 400 and 360 kg/m 3 , and two ratios between water and cement, 0.43 and 0.39, respectively. The RBAC mixtures containing EPS beads in 15%, 25% and 35% replacement percentages were evaluated through a comprehensive test program based on the European standards. The results showed that, in general, the use of polystyrene (EPS) beads decreased the mechanical properties of the recycled brick aggregate concrete; however, the outcome indicates the potential for producing lightweight concrete of different grades, including structural classes. It was found that the developed lightweight concrete presents a uniform distribution of the polystyrene granules in the hardened volume of concrete. Also, it was found that the recycled brick aggregate with a 16 mm maximum size did not negatively influence the uniform distribution of the EPS beads, avoiding concentrations of beads. With the increase in the percentage of EPS beads, the properties of the recycled brick aggregate concrete were found to be less sensitive to the water-to-cement ratio.
Keywords: recycled brick aggregate; lightweight aggregate concrete; expanded polystyrene beads; waste clay bricks; structural grade concrete; construction and demolition waste (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2025
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2071-1050/17/7/3050/pdf (application/pdf)
https://www.mdpi.com/2071-1050/17/7/3050/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:17:y:2025:i:7:p:3050-:d:1623766
Access Statistics for this article
Sustainability is currently edited by Ms. Alexandra Wu
More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().