The Advancements in Agricultural Greenhouse Technologies: An Energy Management Perspective
Shaival Nagarsheth (),
Kodjo Agbossou,
Nilson Henao and
Mathieu Bendouma
Additional contact information
Shaival Nagarsheth: Laboratoire d’Innovation et de Recherche en Énergie Intelligent (LIREI), Institut de Recherche sur L’hydrogène (IRH), Université du Québec à Trois-Rivières (UQTR), Trois-Rivières, QC G9A 5H7, Canada
Kodjo Agbossou: Laboratoire d’Innovation et de Recherche en Énergie Intelligent (LIREI), Institut de Recherche sur L’hydrogène (IRH), Université du Québec à Trois-Rivières (UQTR), Trois-Rivières, QC G9A 5H7, Canada
Nilson Henao: Laboratoire d’Innovation et de Recherche en Énergie Intelligent (LIREI), Institut de Recherche sur L’hydrogène (IRH), Université du Québec à Trois-Rivières (UQTR), Trois-Rivières, QC G9A 5H7, Canada
Mathieu Bendouma: Département des sols et de Génie Agroalimentaire, Université Laval, Ville de Québec, QC G1V 0A6, Canada
Sustainability, 2025, vol. 17, issue 8, 1-30
Abstract:
Greenhouse technologies provide controlled environmental conditions for crop growth, often incorporating automation to enhance productivity. Energy management, which involves monitoring, controlling, and conserving energy, is particularly crucial in northern climates, where greenhouses are among the most energy-intensive sectors of agriculture. This paper presents a comprehensive review of state-of-the-art greenhouse technologies from an energy management perspective, exploring their role in enhancing efficiency and sustainability. It examines the energy management framework, key technological advancements, benefits, challenges, and available solutions in the market. Furthermore, it discusses principles and methods of energy optimization, best practices for sustainable greenhouse operations, and emerging trends in smart grids, renewable integration, and automation. Unlike previous studies primarily focusing on agricultural and control perspectives, this review highlights new insights into integrating greenhouse energy management with smart grid participation, leveraging model predictive control (MPC) for energy optimization, multi-agent reinforcement learning (DRL) for adaptive control, and digital twin technology for real-time system modeling. By bridging greenhouse energy management with transactive energy platforms, this paper underscores the importance of intelligent, data-driven decision-making in enhancing efficiency, sustainability, and system resilience while minimizing environmental impact.
Keywords: agricultural greenhouse; microclimate; energy management; control strategies; optimization; modeling; demand response (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2071-1050/17/8/3407/pdf (application/pdf)
https://www.mdpi.com/2071-1050/17/8/3407/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:17:y:2025:i:8:p:3407-:d:1632863
Access Statistics for this article
Sustainability is currently edited by Ms. Alexandra Wu
More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().