EconPapers    
Economics at your fingertips  
 

Study on Carbon Emissions from Road Traffic in Ningbo City Based on LEAP Modelling

Yan Lu, Lin Guo () and Runmou Xiao ()
Additional contact information
Yan Lu: College of Architecture and Transportation, Ningbo University of Technology, Ningbo 315201, China
Lin Guo: College of Architecture and Transportation, Ningbo University of Technology, Ningbo 315201, China
Runmou Xiao: Automobile College, Chang’an University, Xi’an 710064, China

Sustainability, 2025, vol. 17, issue 9, 1-26

Abstract: Rapid urbanization in China is intensifying travel demand while making transport the nation’s third-largest source of carbon emissions. Anticipating continued growth in private-car fleets, this study integrates vehicle-stock forecasting with multi-scenario emission modeling to identify effective decarbonization pathways for Chinese cities. First, Kendall rank and grey relational analyses are combined to screen the key drivers of car ownership, creating a concise input set for prediction. A Lévy-flight-enhanced Sparrow Search Algorithm (LSSA) is then used to optimize the smoothing factor of the Generalized Regression Neural Network (GRNN), producing the Levy flight-improved Sparrow Search Algorithm optimized Generalized Regression Neural Network (LSSA-GRNN) model for annual fleet projections. Second, a three-tier scenario framework—Baseline, Moderate Low-Carbon, and Enhanced Low-Carbon—is constructed in the Long-range Energy Alternatives Planning System (LEAP) platform. Using Ningbo as a case study, the LSSA-GRNN outperforms both the benchmark Sparrow Search Algorithm optimized Generalized Regression Neural Network (SSA-GRNN) and the conventional GRNN across all accuracy metrics. Results indicate that Ningbo’s car fleet will keep expanding to 2030, albeit at a slowing rate. Relative to 2022 levels, the Enhanced Low-Carbon scenario delivers the largest emission reduction, driven primarily by accelerated electrification, whereas public transport optimization exhibits a slower cumulative effect. The methodological framework offers a transferable tool for cities seeking to link fleet dynamics with emission scenarios and to design robust low-carbon transport policies.

Keywords: carbon emission reduction in urban traffic; car ownership; scenario analysis; LEAP model; GRNN (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/17/9/3969/pdf (application/pdf)
https://www.mdpi.com/2071-1050/17/9/3969/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:17:y:2025:i:9:p:3969-:d:1644705

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-05-17
Handle: RePEc:gam:jsusta:v:17:y:2025:i:9:p:3969-:d:1644705