EconPapers    
Economics at your fingertips  
 

Production of Biosorbents from Waste Olive Cake and Its Adsorption Characteristics for Zn 2+ Ion

Ana Fernando, Sofia Monteiro, Filomena Pinto and Benilde Mendes
Additional contact information
Ana Fernando: Grupo de Disciplinas de Ecologia da Hidrosfera/Unidade de Biotecnologia Ambiental, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829-516 Caparica, Portugal
Sofia Monteiro: Grupo de Disciplinas de Ecologia da Hidrosfera/Unidade de Biotecnologia Ambiental, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829-516 Caparica, Portugal
Filomena Pinto: Departamento de Engenharia Energética e Controle Ambiental, INETI, Estrada do Paço do Lumiar, 22, 1649-038 Lisboa, Portugal
Benilde Mendes: Grupo de Disciplinas de Ecologia da Hidrosfera/Unidade de Biotecnologia Ambiental, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829-516 Caparica, Portugal

Sustainability, 2009, vol. 1, issue 2, 1-21

Abstract: In this study, waste olive cake (OC) was utilized as the raw material for the production of biosorbents by chemical treatment and its adsorption capacity for zinc ion was evaluated. Tests were conducted with the total biomass (T) and with the fraction > 2.00 mm (P), in order to determinate the influence of this fractionation step on subsequent treatments. Two chemical agents were used: sulfuric acid and sodium hydroxide. The parameters studied include physical and chemical properties of materials, contact time, pH, adsorbent dose and initial concentrations. The kinetic data were best fitted to the pseudo-second order model. Zinc binding is strongly pH dependent, with more zinc ions bound at a higher pH (5-7 in a range of 3-7). Both Langmuir and Freundlich models are well suited to fit the data on sorption of zinc by OC. Data on sorption of zinc by waste olive cake treated with sulfuric acid (OC-H) was better described by the Freundlich model. Zinc sorption by waste olive cake treated with sodium hydroxide (OC-OH) was better described by the Langmuir model. Results show OC-OH is a biosorbent with a superior adsorption capacity for zinc than OC-H. The maximum adsorption capacity obtained from the Langmuir isotherms increases in the order (mg/g): OC-HT (14), OCT (22) and OC-OHT (27). Results also indicate that the previous fractionation step doesn´t produce a biosorbent with a superior adsorption capacity.

Keywords: biosorbents; chemical treatment; Zinc(II); olive cake; adsorption (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2009
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2071-1050/1/2/277/pdf (application/pdf)
https://www.mdpi.com/2071-1050/1/2/277/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:1:y:2009:i:2:p:277-297:d:5137

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jsusta:v:1:y:2009:i:2:p:277-297:d:5137