Experiential Knowledge Complements an LCA-Based Decision Support Framework
Heng Yi Teah,
Yasuhiro Fukushima and
Motoharu Onuki
Additional contact information
Heng Yi Teah: Graduate Program in Sustainability Science, Global Leadership Initiative (GPSS-GLI), Division of Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, 332 Building of Environmental Studies, 5-1-5 Kashiwanoha, Kashiwa City, Chiba 277-8563, Japan
Yasuhiro Fukushima: Department of Chemical Engineering, Graduate School of Engineering, Tohoku University, 6-6-07, Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
Motoharu Onuki: Graduate Program in Sustainability Science, Global Leadership Initiative (GPSS-GLI), Division of Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, 332 Building of Environmental Studies, 5-1-5 Kashiwanoha, Kashiwa City, Chiba 277-8563, Japan
Sustainability, 2015, vol. 7, issue 9, 1-16
Abstract:
A shrimp farmer in Taiwan practices innovation through trial-and-error for better income and a better environment, but such farmer-based innovation sometimes fails because the biological mechanism is unclear. Systematic field experimentation and laboratory research are often too costly, and simulating ground conditions is often too challenging. To solve this dilemma, we propose a decision support framework that explicitly utilizes farmer experiential knowledge through a participatory approach to alternatively estimate prospective change in shrimp farming productivity, and to co-design options for improvement. Data obtained from the farmer enable us to quantitatively analyze the production cost and greenhouse gas (GHG) emission with a life cycle assessment (LCA) methodology. We used semi-quantitative graphical representations of indifference curves and mixing triangles to compare and show better options for the farmer. Our results empower the farmer to make decisions more systematically and reliably based on the frequency of heterotrophic bacteria application and the revision of feed input. We argue that experiential knowledge may be less accurate due to its dependence on varying levels of farmer experience, but this knowledge is a reasonable alternative for immediate decision-making. More importantly, our developed framework advances the scope of LCA application to support practically important yet scientifically uncertain cases.
Keywords: life cycle assessment; decision support framework; experiential knowledge; shrimp farming; farmer-based innovation; indifference curves; mixing triangle (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/2071-1050/7/9/12386/pdf (application/pdf)
https://www.mdpi.com/2071-1050/7/9/12386/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:7:y:2015:i:9:p:12386-12401:d:55534
Access Statistics for this article
Sustainability is currently edited by Ms. Alexandra Wu
More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().