EconPapers    
Economics at your fingertips  
 

Finite Element Simulation of Total Nitrogen Transport in Riparian Buffer in an Agricultural Watershed

Xiaosheng Lin, Jie Tang, Zhaoyang Li and Haiyi Li
Additional contact information
Xiaosheng Lin: Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130000, China
Jie Tang: Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130000, China
Zhaoyang Li: College of Environment and Resource, Jilin University, Changchun 130000, China
Haiyi Li: College of Environment and Resource, Jilin University, Changchun 130000, China

Sustainability, 2016, vol. 8, issue 3, 1-14

Abstract: Riparian buffers can influence water quality in downstream lakes or rivers by buffering non-point source pollution in upstream agricultural fields. With increasing nitrogen (N) pollution in small agricultural watersheds, a major function of riparian buffers is to retain N in the soil. A series of field experiments were conducted to monitor pollutant transport in riparian buffers of small watersheds, while numerical model-based analysis is scarce. In this study, we set up a field experiment to monitor the retention rates of total N in different widths of buffer strips and used a finite element model (HYDRUS 2D/3D) to simulate the total N transport in the riparian buffer of an agricultural non-point source polluted area in the Liaohe River basin. The field experiment retention rates for total N were 19.4%, 26.6%, 29.5%, and 42.9% in 1,3,4, and 6m-wide buffer strips, respectively. Throughout the simulation period, the concentration of total N of the 1mwide buffer strip reached a maximum of 1.27 mg/cm 3 at 30 min, decreasing before leveling off. The concentration of total N about the 3mwide buffer strip consistently increased, with a maximum of 1.05 mg/cm 3 observed at 60 min. Under rainfall infiltration, the buffer strips of different widths showed a retention effect on total N transport, and the optimum effect was simulated in the 6mwide buffer strip. A comparison between measured and simulated data revealed that finite element simulation could simulate N transport in the soil of riparian buffer strips.

Keywords: finite element model; rainfall infiltration; pollutant retention; numerical modeling; agricultural watershed (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.mdpi.com/2071-1050/8/3/288/pdf (application/pdf)
https://www.mdpi.com/2071-1050/8/3/288/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:8:y:2016:i:3:p:288-:d:66209

Access Statistics for this article

Sustainability is currently edited by Ms. Alexandra Wu

More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-24
Handle: RePEc:gam:jsusta:v:8:y:2016:i:3:p:288-:d:66209